TiKV 高内存场景下的写入优化策略分析
2025-05-14 05:10:29作者:董宙帆
背景与问题现象
在分布式数据库TiKV的实际生产环境中,我们观察到一个典型的高内存使用场景引发的写入问题链式反应。当集群中某个节点磁盘空间不足时,会引发一系列连锁反应,最终导致整个集群写入能力下降。
具体表现为:当某个TiKV节点(如tikv-2)磁盘空间低于5%阈值时,节点会拒绝写入请求并返回"AlmostFull"错误。此时,其他健康节点(如tikv-0和tikv-1)由于无法向该节点同步raft日志,导致日志无法正常压缩,内存使用量持续增长。当内存达到高水位线后,这些原本健康的节点也开始拒绝写入请求,最终造成整个集群写入服务不可用。
问题根因分析
这个问题的核心在于TiKV当前的内存管理机制存在两个关键缺陷:
-
故障传播机制不完善:单个节点的磁盘空间问题不应导致整个集群的写入能力丧失。健康节点在遇到同步障碍时,应该具备自我保护能力,而不是被动地让内存增长直至拒绝服务。
-
内存回收策略不够积极:当内存使用量接近阈值时,系统应该优先尝试通过主动释放资源(如raft日志缓存)来维持服务,而不是直接拒绝请求。当前的实现缺乏这种积极的资源回收机制。
优化方案设计
针对上述问题,我们提出以下优化方向:
1. 主动内存回收机制
在内存使用量接近警戒线时,系统应该主动触发以下回收策略:
- 强制压缩raft日志,即使部分follower无法同步
- 主动释放entry cache等可重建的内存缓存
- 动态调整内存配额,优先保障核心写入路径
2. 故障隔离改进
实现更精细化的故障隔离策略:
- 区分磁盘空间问题和内存问题的影响范围
- 对于因follower问题导致的同步障碍,leader应继续服务可用的部分
- 实现部分写入可用性,而不是全有或全无的二元状态
3. 可观测性增强
改进监控指标和错误报告机制:
- 明确区分不同原因的"Server is busy"错误
- 暴露raft日志压缩受阻的详细指标
- 提供内存回收操作的相关metric
实现原理
优化的核心在于改写raft日志处理流程中的内存检查逻辑。当准备追加日志时:
- 首先检查内存使用量
- 如果接近阈值,尝试主动释放entry cache
- 若释放后仍不足,再考虑拒绝请求
- 记录内存回收操作的次数和效果
同时,对于因follower问题导致的日志压缩停滞,leader节点可以:
- 标记不可用的follower
- 继续为可用的follower服务
- 定期重试与问题follower的连接
预期效果
实施这些优化后,系统将获得以下改进:
- 降低故障爆炸半径:单个节点的磁盘问题不会扩散到整个集群
- 提高系统韧性:内存压力下仍能维持基本服务能力
- 提升运维效率:更清晰的监控指标便于快速定位问题根源
这种优化特别适用于磁盘空间不均衡的部署环境,能够显著提高TiKV集群的整体可用性和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133