TiKV 高内存场景下的写入优化策略分析
2025-05-14 20:00:38作者:董宙帆
背景与问题现象
在分布式数据库TiKV的实际生产环境中,我们观察到一个典型的高内存使用场景引发的写入问题链式反应。当集群中某个节点磁盘空间不足时,会引发一系列连锁反应,最终导致整个集群写入能力下降。
具体表现为:当某个TiKV节点(如tikv-2)磁盘空间低于5%阈值时,节点会拒绝写入请求并返回"AlmostFull"错误。此时,其他健康节点(如tikv-0和tikv-1)由于无法向该节点同步raft日志,导致日志无法正常压缩,内存使用量持续增长。当内存达到高水位线后,这些原本健康的节点也开始拒绝写入请求,最终造成整个集群写入服务不可用。
问题根因分析
这个问题的核心在于TiKV当前的内存管理机制存在两个关键缺陷:
-
故障传播机制不完善:单个节点的磁盘空间问题不应导致整个集群的写入能力丧失。健康节点在遇到同步障碍时,应该具备自我保护能力,而不是被动地让内存增长直至拒绝服务。
-
内存回收策略不够积极:当内存使用量接近阈值时,系统应该优先尝试通过主动释放资源(如raft日志缓存)来维持服务,而不是直接拒绝请求。当前的实现缺乏这种积极的资源回收机制。
优化方案设计
针对上述问题,我们提出以下优化方向:
1. 主动内存回收机制
在内存使用量接近警戒线时,系统应该主动触发以下回收策略:
- 强制压缩raft日志,即使部分follower无法同步
- 主动释放entry cache等可重建的内存缓存
- 动态调整内存配额,优先保障核心写入路径
2. 故障隔离改进
实现更精细化的故障隔离策略:
- 区分磁盘空间问题和内存问题的影响范围
- 对于因follower问题导致的同步障碍,leader应继续服务可用的部分
- 实现部分写入可用性,而不是全有或全无的二元状态
3. 可观测性增强
改进监控指标和错误报告机制:
- 明确区分不同原因的"Server is busy"错误
- 暴露raft日志压缩受阻的详细指标
- 提供内存回收操作的相关metric
实现原理
优化的核心在于改写raft日志处理流程中的内存检查逻辑。当准备追加日志时:
- 首先检查内存使用量
- 如果接近阈值,尝试主动释放entry cache
- 若释放后仍不足,再考虑拒绝请求
- 记录内存回收操作的次数和效果
同时,对于因follower问题导致的日志压缩停滞,leader节点可以:
- 标记不可用的follower
- 继续为可用的follower服务
- 定期重试与问题follower的连接
预期效果
实施这些优化后,系统将获得以下改进:
- 降低故障爆炸半径:单个节点的磁盘问题不会扩散到整个集群
- 提高系统韧性:内存压力下仍能维持基本服务能力
- 提升运维效率:更清晰的监控指标便于快速定位问题根源
这种优化特别适用于磁盘空间不均衡的部署环境,能够显著提高TiKV集群的整体可用性和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.89 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1