Pandas数据处理实战:高效技巧与实用案例解析
2025-05-31 08:51:30作者:滑思眉Philip
前言
Pandas作为Python数据分析的核心库,提供了丰富的数据处理功能。本文将深入探讨Pandas中的各种实用技巧和高效数据处理方法,通过具体案例帮助读者掌握Pandas的高级用法。
条件逻辑处理技巧
if-then条件赋值
在数据分析中,我们经常需要根据某列的条件值来修改其他列的值。Pandas提供了简洁高效的实现方式:
df = pd.DataFrame({
'AAA': [4, 5, 6, 7],
'BBB': [10, 20, 30, 40],
'CCC': [100, 50, -30, -50]
})
# 单条件单列赋值
df.loc[df.AAA >= 5, 'BBB'] = -1
# 多条件多列赋值
df.loc[df.AAA >= 5, ['BBB', 'CCC']] = 555
使用where方法
where方法可以保留满足条件的值,不满足条件的替换为指定值:
df_mask = pd.DataFrame({
'AAA': [True] * 4,
'BBB': [False] * 4,
'CCC': [True, False] * 2
})
df.where(df_mask, -1000)
numpy.where实现条件逻辑
结合numpy的where函数可以更灵活地实现条件逻辑:
df['logic'] = np.where(df['AAA'] > 5, 'high', 'low')
数据筛选与分割
基于条件分割DataFrame
# 分割为两部分
df[df.AAA <= 5] # 条件为True的部分
df[df.AAA > 5] # 条件为False的部分
多条件组合筛选
# 与条件
df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']
# 或条件
df.loc[(df['BBB'] > 25) | (df['CCC'] >= -40), 'AAA']
动态条件构建
当需要组合多个条件时,可以使用reduce函数动态构建:
import functools
Crit1 = df.AAA <= 5.5
Crit2 = df.BBB == 10.0
Crit3 = df.CCC > -40.0
CritList = [Crit1, Crit2, Crit3]
AllCrit = functools.reduce(lambda x, y: x & y, CritList)
df[AllCrit]
索引与切片技巧
标签与位置索引
Pandas提供了两种索引方式:
iloc:基于位置的索引loc:基于标签的索引
df = pd.DataFrame({
'AAA': [4, 5, 6, 7],
'BBB': [10, 20, 30, 40],
'CCC': [100, 50, -30, -50]
}, index=['foo', 'bar', 'boo', 'kar'])
# 位置索引
df.iloc[0:3] # 不包含结束位置
# 标签索引
df.loc['bar':'kar'] # 包含结束标签
多级索引(MultiIndex)操作
多级索引是处理高维数据的强大工具:
# 创建多级索引
cols = pd.MultiIndex.from_tuples([(x, y) for x in ['A', 'B', 'C'] for y in ['O', 'I']])
df = pd.DataFrame(np.random.randn(2, 6), index=['n', 'm'], columns=cols)
# 按级别广播运算
df = df.div(df['C'], level=1)
# 使用xs方法切片
df.xs('BB', level=0, axis=0) # 第一级索引
df.xs('six', level=1, axis=0) # 第二级索引
分组聚合高级技巧
分组后保留其他列
df = pd.DataFrame({
'AAA': [1, 1, 1, 2, 2, 2, 3, 3],
'BBB': [2, 1, 3, 4, 5, 1, 2, 3]
})
# 方法1:使用idxmin保留完整行
df.loc[df.groupby("AAA")["BBB"].idxmin()]
# 方法2:排序后取每组第一条
df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
自定义聚合函数
def GrowUp(x):
avg_weight = sum(x[x['size'] == 'S'].weight * 1.5)
avg_weight += sum(x[x['size'] == 'M'].weight * 1.25)
avg_weight += sum(x[x['size'] == 'L'].weight)
avg_weight /= len(x)
return pd.Series(['L', avg_weight, True], index=['size', 'weight', 'adult'])
df.groupby('animal').apply(GrowUp)
分组替换值
df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, -1, 1, 2]})
gb = df.groupby('A')
def replace(g):
mask = g < 0
return g.where(mask, g[~mask].mean())
gb.transform(replace)
缺失数据处理
反向填充时间序列
df = pd.DataFrame(np.random.randn(6, 1),
index=pd.date_range('2013-08-01', periods=6, freq='B'),
columns=list('A'))
df.loc[df.index[3], 'A'] = np.nan
# 反向填充
df.reindex(df.index[::-1]).ffill()
总结
本文介绍了Pandas中各种高效的数据处理技巧,包括条件逻辑处理、数据筛选分割、索引切片、分组聚合以及缺失值处理等。掌握这些技巧可以显著提高数据分析的效率和代码的可读性。实际应用中,应根据具体场景选择最合适的方法,灵活组合各种操作来完成复杂的数据处理任务。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328