Pandas数据处理实战:高效技巧与实用案例解析
2025-05-31 23:07:14作者:滑思眉Philip
前言
Pandas作为Python数据分析的核心库,提供了丰富的数据处理功能。本文将深入探讨Pandas中的各种实用技巧和高效数据处理方法,通过具体案例帮助读者掌握Pandas的高级用法。
条件逻辑处理技巧
if-then条件赋值
在数据分析中,我们经常需要根据某列的条件值来修改其他列的值。Pandas提供了简洁高效的实现方式:
df = pd.DataFrame({
'AAA': [4, 5, 6, 7],
'BBB': [10, 20, 30, 40],
'CCC': [100, 50, -30, -50]
})
# 单条件单列赋值
df.loc[df.AAA >= 5, 'BBB'] = -1
# 多条件多列赋值
df.loc[df.AAA >= 5, ['BBB', 'CCC']] = 555
使用where方法
where方法可以保留满足条件的值,不满足条件的替换为指定值:
df_mask = pd.DataFrame({
'AAA': [True] * 4,
'BBB': [False] * 4,
'CCC': [True, False] * 2
})
df.where(df_mask, -1000)
numpy.where实现条件逻辑
结合numpy的where函数可以更灵活地实现条件逻辑:
df['logic'] = np.where(df['AAA'] > 5, 'high', 'low')
数据筛选与分割
基于条件分割DataFrame
# 分割为两部分
df[df.AAA <= 5] # 条件为True的部分
df[df.AAA > 5] # 条件为False的部分
多条件组合筛选
# 与条件
df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']
# 或条件
df.loc[(df['BBB'] > 25) | (df['CCC'] >= -40), 'AAA']
动态条件构建
当需要组合多个条件时,可以使用reduce函数动态构建:
import functools
Crit1 = df.AAA <= 5.5
Crit2 = df.BBB == 10.0
Crit3 = df.CCC > -40.0
CritList = [Crit1, Crit2, Crit3]
AllCrit = functools.reduce(lambda x, y: x & y, CritList)
df[AllCrit]
索引与切片技巧
标签与位置索引
Pandas提供了两种索引方式:
iloc:基于位置的索引loc:基于标签的索引
df = pd.DataFrame({
'AAA': [4, 5, 6, 7],
'BBB': [10, 20, 30, 40],
'CCC': [100, 50, -30, -50]
}, index=['foo', 'bar', 'boo', 'kar'])
# 位置索引
df.iloc[0:3] # 不包含结束位置
# 标签索引
df.loc['bar':'kar'] # 包含结束标签
多级索引(MultiIndex)操作
多级索引是处理高维数据的强大工具:
# 创建多级索引
cols = pd.MultiIndex.from_tuples([(x, y) for x in ['A', 'B', 'C'] for y in ['O', 'I']])
df = pd.DataFrame(np.random.randn(2, 6), index=['n', 'm'], columns=cols)
# 按级别广播运算
df = df.div(df['C'], level=1)
# 使用xs方法切片
df.xs('BB', level=0, axis=0) # 第一级索引
df.xs('six', level=1, axis=0) # 第二级索引
分组聚合高级技巧
分组后保留其他列
df = pd.DataFrame({
'AAA': [1, 1, 1, 2, 2, 2, 3, 3],
'BBB': [2, 1, 3, 4, 5, 1, 2, 3]
})
# 方法1:使用idxmin保留完整行
df.loc[df.groupby("AAA")["BBB"].idxmin()]
# 方法2:排序后取每组第一条
df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
自定义聚合函数
def GrowUp(x):
avg_weight = sum(x[x['size'] == 'S'].weight * 1.5)
avg_weight += sum(x[x['size'] == 'M'].weight * 1.25)
avg_weight += sum(x[x['size'] == 'L'].weight)
avg_weight /= len(x)
return pd.Series(['L', avg_weight, True], index=['size', 'weight', 'adult'])
df.groupby('animal').apply(GrowUp)
分组替换值
df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, -1, 1, 2]})
gb = df.groupby('A')
def replace(g):
mask = g < 0
return g.where(mask, g[~mask].mean())
gb.transform(replace)
缺失数据处理
反向填充时间序列
df = pd.DataFrame(np.random.randn(6, 1),
index=pd.date_range('2013-08-01', periods=6, freq='B'),
columns=list('A'))
df.loc[df.index[3], 'A'] = np.nan
# 反向填充
df.reindex(df.index[::-1]).ffill()
总结
本文介绍了Pandas中各种高效的数据处理技巧,包括条件逻辑处理、数据筛选分割、索引切片、分组聚合以及缺失值处理等。掌握这些技巧可以显著提高数据分析的效率和代码的可读性。实际应用中,应根据具体场景选择最合适的方法,灵活组合各种操作来完成复杂的数据处理任务。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
218
88
暂无简介
Dart
720
174
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
334
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
435
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19