Pandas数据处理实战:高效技巧与实用案例解析
2025-05-31 21:47:44作者:滑思眉Philip
前言
Pandas作为Python数据分析的核心库,提供了丰富的数据处理功能。本文将深入探讨Pandas中的各种实用技巧和高效数据处理方法,通过具体案例帮助读者掌握Pandas的高级用法。
条件逻辑处理技巧
if-then条件赋值
在数据分析中,我们经常需要根据某列的条件值来修改其他列的值。Pandas提供了简洁高效的实现方式:
df = pd.DataFrame({
'AAA': [4, 5, 6, 7],
'BBB': [10, 20, 30, 40],
'CCC': [100, 50, -30, -50]
})
# 单条件单列赋值
df.loc[df.AAA >= 5, 'BBB'] = -1
# 多条件多列赋值
df.loc[df.AAA >= 5, ['BBB', 'CCC']] = 555
使用where方法
where方法可以保留满足条件的值,不满足条件的替换为指定值:
df_mask = pd.DataFrame({
'AAA': [True] * 4,
'BBB': [False] * 4,
'CCC': [True, False] * 2
})
df.where(df_mask, -1000)
numpy.where实现条件逻辑
结合numpy的where函数可以更灵活地实现条件逻辑:
df['logic'] = np.where(df['AAA'] > 5, 'high', 'low')
数据筛选与分割
基于条件分割DataFrame
# 分割为两部分
df[df.AAA <= 5] # 条件为True的部分
df[df.AAA > 5] # 条件为False的部分
多条件组合筛选
# 与条件
df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']
# 或条件
df.loc[(df['BBB'] > 25) | (df['CCC'] >= -40), 'AAA']
动态条件构建
当需要组合多个条件时,可以使用reduce函数动态构建:
import functools
Crit1 = df.AAA <= 5.5
Crit2 = df.BBB == 10.0
Crit3 = df.CCC > -40.0
CritList = [Crit1, Crit2, Crit3]
AllCrit = functools.reduce(lambda x, y: x & y, CritList)
df[AllCrit]
索引与切片技巧
标签与位置索引
Pandas提供了两种索引方式:
iloc:基于位置的索引loc:基于标签的索引
df = pd.DataFrame({
'AAA': [4, 5, 6, 7],
'BBB': [10, 20, 30, 40],
'CCC': [100, 50, -30, -50]
}, index=['foo', 'bar', 'boo', 'kar'])
# 位置索引
df.iloc[0:3] # 不包含结束位置
# 标签索引
df.loc['bar':'kar'] # 包含结束标签
多级索引(MultiIndex)操作
多级索引是处理高维数据的强大工具:
# 创建多级索引
cols = pd.MultiIndex.from_tuples([(x, y) for x in ['A', 'B', 'C'] for y in ['O', 'I']])
df = pd.DataFrame(np.random.randn(2, 6), index=['n', 'm'], columns=cols)
# 按级别广播运算
df = df.div(df['C'], level=1)
# 使用xs方法切片
df.xs('BB', level=0, axis=0) # 第一级索引
df.xs('six', level=1, axis=0) # 第二级索引
分组聚合高级技巧
分组后保留其他列
df = pd.DataFrame({
'AAA': [1, 1, 1, 2, 2, 2, 3, 3],
'BBB': [2, 1, 3, 4, 5, 1, 2, 3]
})
# 方法1:使用idxmin保留完整行
df.loc[df.groupby("AAA")["BBB"].idxmin()]
# 方法2:排序后取每组第一条
df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
自定义聚合函数
def GrowUp(x):
avg_weight = sum(x[x['size'] == 'S'].weight * 1.5)
avg_weight += sum(x[x['size'] == 'M'].weight * 1.25)
avg_weight += sum(x[x['size'] == 'L'].weight)
avg_weight /= len(x)
return pd.Series(['L', avg_weight, True], index=['size', 'weight', 'adult'])
df.groupby('animal').apply(GrowUp)
分组替换值
df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, -1, 1, 2]})
gb = df.groupby('A')
def replace(g):
mask = g < 0
return g.where(mask, g[~mask].mean())
gb.transform(replace)
缺失数据处理
反向填充时间序列
df = pd.DataFrame(np.random.randn(6, 1),
index=pd.date_range('2013-08-01', periods=6, freq='B'),
columns=list('A'))
df.loc[df.index[3], 'A'] = np.nan
# 反向填充
df.reindex(df.index[::-1]).ffill()
总结
本文介绍了Pandas中各种高效的数据处理技巧,包括条件逻辑处理、数据筛选分割、索引切片、分组聚合以及缺失值处理等。掌握这些技巧可以显著提高数据分析的效率和代码的可读性。实际应用中,应根据具体场景选择最合适的方法,灵活组合各种操作来完成复杂的数据处理任务。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355