PDF Reader MCP 项目快速入门指南
项目概述
PDF Reader MCP 是一个专门用于处理PDF文档的微服务工具,它通过MCP协议提供PDF文件的读取、元数据提取和文本内容解析等功能。该项目特别适合需要批量处理PDF文档的应用场景,如文档管理系统、知识库构建等。
环境准备
在开始使用前,请确保您已经具备以下条件:
- 已安装Node.js运行环境(建议使用LTS版本)
- 拥有一个支持MCP协议的客户端或主机环境
- 对于Docker部署方式,需要安装Docker引擎
服务启动方式
PDF Reader MCP 服务器支持多种启动方式,您可以根据实际需求选择最适合的一种:
1. 通过npm/pnpm启动
如果您使用npm或pnpm作为包管理器,可以直接使用以下命令启动服务:
npx @sylphlab/pdf-reader-mcp
这种方式会自动处理依赖关系和工作目录设置。
2. 独立运行方式
如果您下载了项目源代码,可以使用Node.js直接运行:
cd /项目/根目录
node /pdf-reader-mcp/build/index.js
注意:工作目录必须设置为包含您要处理的PDF文件的根目录。
3. Docker容器方式
对于容器化部署,可以使用以下命令:
docker run -i --rm -v "/本地项目路径:/app" sylphlab/pdf-reader-mcp:latest
这种方式会自动挂载您指定的本地目录到容器内,方便访问PDF文件。
核心功能使用指南
PDF Reader MCP 提供了一个主要工具:read_pdf
,它支持多种PDF处理功能。
请求参数详解
read_pdf
工具接受一个JSON对象作为输入,包含以下关键参数:
sources
:必填参数,指定要处理的PDF来源数组- 每个来源可以指定本地路径(
path
)或URL(url
) - 可选指定要提取的页面范围(
pages
)
- 每个来源可以指定本地路径(
include_full_text
:是否包含全文内容(默认false)include_metadata
:是否包含元数据(默认true)include_page_count
:是否包含页数统计(默认true)
典型使用场景示例
场景1:获取PDF元数据和页数
{
"tool_name": "read_pdf",
"arguments": {
"sources": [{ "path": "./文档/报告.pdf" }],
"include_metadata": true,
"include_page_count": true,
"include_full_text": false
}
}
场景2:提取特定页面内容
{
"tool_name": "read_pdf",
"arguments": {
"sources": [
{
"path": "./发票/inv-001.pdf",
"pages": [2] // 只提取第2页内容
},
{
"url": "https://example.com/白皮书.pdf"
// 未指定pages,将根据include_full_text参数处理
}
],
"include_metadata": false,
"include_page_count": false,
"include_full_text": true
}
}
响应结果解析
服务返回的结果是一个名为results
的数组,每个元素对应请求中的一个来源。每个结果对象包含:
source
:原始路径或URLsuccess
:处理是否成功data
:成功时的处理结果num_pages
:总页数info
:PDF信息字典metadata
:PDF元数据page_texts
:页面文本内容数组
error
:失败时的错误信息code
:错误代码message
:错误描述
最佳实践建议
-
批量处理优化:当需要处理大量PDF文件时,建议分批发送请求,每批10-20个文件,以避免服务器过载。
-
选择性提取:如果只需要部分页面内容,使用
pages
参数指定具体页面,可以显著提高处理效率。 -
错误处理:实现健壮的错误处理逻辑,特别是对于网络资源(PDF URL),考虑添加重试机制。
-
元数据利用:PDF的元数据(info和metadata)常包含有用信息,如作者、创建日期等,可以充分利用这些信息进行分类和检索。
-
性能监控:对于长期运行的服务,建议监控处理时间和资源使用情况,及时发现性能瓶颈。
通过本指南,您应该已经掌握了PDF Reader MCP的基本使用方法。该工具设计简洁但功能强大,能够满足大多数PDF处理需求,是文档处理流程中的理想选择。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









