首页
/ 在Jetson Orin设备上部署Segment Anything Model 2的技术方案

在Jetson Orin设备上部署Segment Anything Model 2的技术方案

2025-05-15 19:05:47作者:冯爽妲Honey

Segment Anything Model 2(SAM 2)作为Meta推出的先进图像分割模型,在边缘计算设备如Jetson Orin系列上的部署面临一些特殊挑战。本文将详细介绍在Jetson Orin Nano/NX等设备上成功运行SAM 2的完整技术方案。

环境准备与依赖管理

Jetson Orin设备通常运行Ubuntu 22.04系统,并配备特定版本的CUDA(如12.2)。对于SAM 2的安装,首先需要确保Python环境配置正确。推荐使用conda或venv创建隔离的Python环境,避免系统级依赖冲突。

PyTorch版本选择至关重要。虽然官方推荐PyTorch ≥2.3.1,但在Jetson平台上,建议直接使用Nvidia提供的预编译版本(如torch 2.4.0a0+07cecf4168.nv24.5),这些版本针对Jetson架构进行了特别优化。

CUDA扩展问题的解决方案

在Jetson设备上编译SAM 2的CUDA扩展时,常见的CUDA_HOME环境变量问题可以通过以下两种方式解决:

  1. 完全跳过CUDA扩展编译:通过设置环境变量SAM2_BUILD_CUDA=0,可以安装不依赖CUDA扩展的版本。虽然性能可能略有影响,但功能完整性基本不受影响。

  2. 使用--no-build-isolation参数:该参数允许pip在当前环境中查找已安装的依赖项,而非创建隔离的构建环境。安装完成后,再重新安装Nvidia提供的PyTorch和Torchvision版本。

版本兼容性实践

对于Torchvision的版本选择,虽然SAM 2官方要求0.19.0,但在Jetson平台上,0.18.0版本也能正常工作。这种版本差异会导致安装时的警告信息,但不会影响核心功能的使用。

安装流程优化

推荐的标准安装流程如下:

  1. 创建并激活Python虚拟环境
  2. 安装Nvidia提供的PyTorch和Torchvision预编译版本
  3. 克隆SAM 2仓库并进入项目目录
  4. 执行以下命令之一:
    • 跳过CUDA扩展:SAM2_BUILD_CUDA=0 pip install -e ".[demo]"
    • 或使用构建隔离禁用:pip install -e . --no-build-isolation

性能考量

在Jetson这类边缘设备上运行SAM 2时,需要注意:

  • 内存消耗:SAM 2模型较大,Jetson Orin Nano的16GB内存可能成为瓶颈
  • 计算效率:没有CUDA扩展的情况下,推理速度可能下降20-30%
  • 温度管理:长时间运行需监控设备温度,必要时启用散热措施

通过本文介绍的方案,开发者可以成功在Jetson Orin系列设备上部署SAM 2,为边缘计算场景下的图像分割应用提供强大支持。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133