在Jetson Orin设备上部署Segment Anything Model 2的技术方案
Segment Anything Model 2(SAM 2)作为Meta推出的先进图像分割模型,在边缘计算设备如Jetson Orin系列上的部署面临一些特殊挑战。本文将详细介绍在Jetson Orin Nano/NX等设备上成功运行SAM 2的完整技术方案。
环境准备与依赖管理
Jetson Orin设备通常运行Ubuntu 22.04系统,并配备特定版本的CUDA(如12.2)。对于SAM 2的安装,首先需要确保Python环境配置正确。推荐使用conda或venv创建隔离的Python环境,避免系统级依赖冲突。
PyTorch版本选择至关重要。虽然官方推荐PyTorch ≥2.3.1,但在Jetson平台上,建议直接使用Nvidia提供的预编译版本(如torch 2.4.0a0+07cecf4168.nv24.5),这些版本针对Jetson架构进行了特别优化。
CUDA扩展问题的解决方案
在Jetson设备上编译SAM 2的CUDA扩展时,常见的CUDA_HOME环境变量问题可以通过以下两种方式解决:
-
完全跳过CUDA扩展编译:通过设置环境变量
SAM2_BUILD_CUDA=0,可以安装不依赖CUDA扩展的版本。虽然性能可能略有影响,但功能完整性基本不受影响。 -
使用--no-build-isolation参数:该参数允许pip在当前环境中查找已安装的依赖项,而非创建隔离的构建环境。安装完成后,再重新安装Nvidia提供的PyTorch和Torchvision版本。
版本兼容性实践
对于Torchvision的版本选择,虽然SAM 2官方要求0.19.0,但在Jetson平台上,0.18.0版本也能正常工作。这种版本差异会导致安装时的警告信息,但不会影响核心功能的使用。
安装流程优化
推荐的标准安装流程如下:
- 创建并激活Python虚拟环境
- 安装Nvidia提供的PyTorch和Torchvision预编译版本
- 克隆SAM 2仓库并进入项目目录
- 执行以下命令之一:
- 跳过CUDA扩展:
SAM2_BUILD_CUDA=0 pip install -e ".[demo]" - 或使用构建隔离禁用:
pip install -e . --no-build-isolation
- 跳过CUDA扩展:
性能考量
在Jetson这类边缘设备上运行SAM 2时,需要注意:
- 内存消耗:SAM 2模型较大,Jetson Orin Nano的16GB内存可能成为瓶颈
- 计算效率:没有CUDA扩展的情况下,推理速度可能下降20-30%
- 温度管理:长时间运行需监控设备温度,必要时启用散热措施
通过本文介绍的方案,开发者可以成功在Jetson Orin系列设备上部署SAM 2,为边缘计算场景下的图像分割应用提供强大支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00