Apache TVM 技术文档
2024-12-23 00:08:44作者:霍妲思
Apache TVM 是一个为深度学习系统设计的编译器堆栈。它旨在缩小以生产力为中心的深度学习框架和以性能和效率为中心的硬件后端之间的差距。TVM 与深度学习框架协同工作,提供端到端的编译以适应不同的后端。
以下是对 Apache TVM 的安装、使用和 API 的详细介绍。
1. 安装指南
在开始安装 TVM 之前,请确保您的系统满足以下要求:
- Python 3.6 或更高版本
- C++ 编译器
- Make 或 CMake
- TVM 依赖库(请参考官方文档)
安装 TVM 的步骤如下:
# 克隆 TVM 仓库
git clone --recursive https://github.com/apache/tvm.git
# 进入 TVM 目录
cd tvm
# 编译 TVM
mkdir build
cd build
cmake ..
make
编译完成后,TVM 的 Python 包将位于 tvm/python 目录下。
2. 项目使用说明
TVM 的使用非常灵活,可以通过 Python API 来调用。以下是一个简单的示例,展示如何使用 TVM 编译和运行一个模型:
import tvm
from tvm import te
# 定义计算
n = te.var("n")
A = te.placeholder((n,), name='A')
B = te.compute(A.shape, lambda i: A[i] + 1, name='B')
# 编译计算
s = te.create_schedule(B.op)
mod = tvm.build(s, [A, B], "llvm", name="myadd")
# 运行计算
a = tvm.nd.array(np.random.uniform(size=10).astype(np.float32))
b = tvm.nd.array(np.zeros(10, dtype=np.float32))
# 调用编译好的函数
mod(a, b)
print(b.numpy())
3. 项目 API 使用文档
TVM 提供了丰富的 API,包括但不限于以下部分:
tvm.te:Tensor Expression 模块,用于定义张量运算。tvm.ir:中间表示(IR)模块,用于处理 TVM 的 IR。tvm.driver:驱动模块,用于编译和执行 TVM 程序。tvm.contrib:贡献模块,包含社区贡献的各种工具和函数。
更多关于 TVM API 的详细信息,请参考官方文档。
4. 项目安装方式
TVM 的安装方式主要有以下几种:
- 源码编译:如上所述,通过克隆仓库并编译源码来安装 TVM。
- Docker:使用官方提供的 Docker 镜像来运行 TVM。
- Conda:通过 Conda 包管理器安装 TVM。
具体的安装方式请参考 TVM 官方文档。
通过以上介绍,您应该能够开始使用 Apache TVM,并在项目中实现深度学习模型的编译和优化。如果您在使用过程中遇到任何问题,可以查阅官方文档或加入社区寻求帮助。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319