LangGraph项目中React Agent系统提示未生效问题解析
2025-05-19 05:10:26作者:郜逊炳
问题背景
在使用LangGraph项目的create_react_agent
功能时,开发者发现当指定response_format
参数用于结构化输出时,系统提示(prompt)没有被包含在最终生成结构化响应的调用中。这导致了一个不一致的行为:虽然中间过程的消息遵循了系统提示(如使用德语回答),但最终的结构化输出却使用了默认语言(英语)。
技术细节分析
该问题的核心在于create_react_agent
函数的实现机制。当开发者同时指定prompt
参数和response_format
参数时,系统提示没有被正确传递到生成结构化输出的最终步骤。
在示例代码中:
agent = create_react_agent(
llm,
tools=[],
prompt="Always answer in German.",
response_format=AgentResponse
)
虽然设置了"Always answer in German."的系统提示,但最终的结构化输出AgentResponse
中的agent_response_text
字段值却是英文的"Horse",而非德语的"Pferd"。
解决方案
LangGraph项目提供了两种解决方式:
-
显式传递系统提示:在调用
invoke()
方法时,明确包含系统提示信息。 -
使用元组格式:更优雅的解决方案是使用元组形式同时传递提示和模式,这是LangGraph推荐的做法:
agent = create_react_agent(
llm,
tools=[],
response_format=("Always answer in German.", AgentResponse)
)
深入理解
这个问题揭示了LangGraph中React Agent工作流程的一个重要特性:结构化输出生成是一个独立的步骤,需要特别注意提示信息的传递。当使用结构化输出时,开发者需要确保所有必要的上下文信息(包括系统提示)都被正确传递到每个处理阶段。
最佳实践建议
- 当使用结构化输出时,优先考虑使用元组形式同时指定提示和模式
- 在复杂场景中,考虑在调用时显式传递系统提示
- 测试时不仅要验证最终输出,也要检查中间步骤是否遵循了所有提示要求
- 对于多语言场景,特别注意结构化输出是否遵循了语言要求
这个问题虽然看似简单,但它提醒我们在使用AI代理时需要注意信息流经各个处理阶段时的完整性,特别是在涉及多步骤处理和结构化输出的场景中。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K