在PyTorch Ignite中实现延迟启动的早停机制
概述
在深度学习模型训练过程中,早停(Early Stopping)是一种常用的正则化技术,用于防止模型过拟合。然而,在训练初期,模型指标往往波动较大,此时启用早停可能导致训练过早终止。本文将介绍如何在PyTorch Ignite框架中实现一种延迟启动的早停机制,确保在前N个epoch后才开始监测早停条件。
早停机制的基本原理
早停机制通过监控验证集上的性能指标来决定是否提前终止训练。当指标在连续多个epoch内没有改善时,训练将被终止。PyTorch Ignite提供了EarlyStopping处理器来实现这一功能。
问题背景
在模型训练初期,特别是前50个epoch左右,模型指标通常会出现较大波动。这种波动并非模型性能的真实反映,而是训练初期的正常现象。如果此时启用早停机制,可能会导致训练过早终止,影响模型最终性能。
解决方案
PyTorch Ignite的事件系统提供了灵活的事件过滤机制,我们可以利用这一特性实现延迟启动的早停功能。具体实现步骤如下:
- 创建标准的
EarlyStopping处理器 - 定义一个事件过滤器,只在epoch大于N时触发早停检查
- 将处理器与过滤后的事件绑定
实现代码示例
from ignite.engine import Engine, Events
from ignite.handlers import EarlyStopping
# 创建训练器和评估器
trainer = Engine(train_step)
evaluator = Engine(eval_step)
# 创建早停处理器
es_handler = EarlyStopping(
patience=3, # 容忍3个epoch没有改善
score_function=lambda e: e.state.metrics["accuracy"],
trainer=trainer
)
# 定义事件过滤器
def delay_early_stopping(engine, epoch):
return epoch > 50 # 前50个epoch不启用早停
# 绑定处理器到评估器的COMPLETED事件,并应用过滤器
evaluator.add_event_handler(
Events.COMPLETED(event_filter=delay_early_stopping),
es_handler
)
关键点解析
-
事件过滤器:
event_filter参数允许我们控制处理器只在特定条件下被触发。这里我们检查当前epoch是否大于50。 -
处理器绑定位置:早停处理器应绑定到评估器的
COMPLETED事件,而不是训练器的事件,因为我们需要在每次验证完成后检查早停条件。 -
score_function:这个函数定义了早停监控的指标。在实际应用中,可以根据需要监控准确率、损失值或其他指标。
进阶应用
-
动态延迟:可以根据模型收敛情况动态调整延迟epoch数,例如当验证损失下降到某个阈值后再开始早停监测。
-
多指标监控:可以扩展
score_function同时监控多个指标,实现更复杂的早停逻辑。 -
日志记录:建议为早停处理器设置专门的logger,便于调试和监控早停触发过程。
总结
通过PyTorch Ignite的事件过滤机制,我们可以灵活地控制早停策略的启用时机。这种延迟启动的早停机制特别适用于训练初期指标波动较大的场景,能够避免过早终止训练,同时保留早停防止过拟合的优势。开发者可以根据具体任务需求调整延迟epoch数和早停参数,获得最佳的训练效果。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00