Google Cloud Go AI Platform v1.71.0 版本发布解析
Google Cloud Go 客户端库中的 AI Platform 组件发布了 v1.71.0 版本,这次更新带来了多项重要功能和改进,主要围绕机器学习模型推理、运行时环境配置和特征管理等方面进行了增强。AI Platform 是 Google Cloud 提供的端到端机器学习平台,帮助开发者构建、部署和管理机器学习模型。
核心功能增强
上下文缓存支持
新版本在 v1 API 中增加了上下文缓存(Context Cache)功能,这项改进可以显著提升模型推理性能。上下文缓存机制允许系统缓存模型处理过的上下文信息,当相同或相似的查询再次出现时,可以直接从缓存中获取部分结果,减少重复计算的开销。这对于处理大语言模型(LLM)等需要处理长上下文的场景尤为重要。
推理优化配置
新增了优化配置(optimized config)支持,开发者现在可以通过 API 为模型部署指定优化参数。这些配置可能包括计算资源分配、批处理大小、并行度等优化选项,帮助模型在特定硬件上获得更好的性能表现。
Notebook 运行时增强
在 NotebookRuntime 和 NotebookRuntimeTemplate 资源中,新增了多项配置选项:
- 机器规格(machine_spec):更精细地定义计算资源配置
- 数据持久化磁盘规格(data_persistent_disk_spec):配置持久化存储
- 网络规格(network_spec):自定义网络配置
- EUC 配置(euc_config):企业使用控制相关设置
- 屏蔽 VM 配置(shielded_vm_config):增强虚拟机安全性
同时,该版本废弃了 service_account 和 is_default 字段,建议开发者迁移到新的配置方式。
模型推理与监控改进
推测性解码支持
新增了推测性解码(speculative decoding)规范到 DeployedModel 协议中。推测性解码是一种优化技术,可以加速自回归模型的推理过程,通过预测可能的输出序列并并行验证,减少总体延迟。这对于实时推理场景特别有价值。
推理监控增强
在特征视图(FeatureView)服务中,现在支持使用服务账号进行认证。同时,v1beta1 API 版本中启用了 UpdateFeatureMonitor 功能,允许开发者动态更新特征监控配置,无需重新部署整个模型。
模型注册与检查点管理
新版本引入了模型注册表检查点(Model Registry Checkpoint)API,为模型训练过程提供了更好的版本控制和状态管理能力。开发者可以:
- 注册训练过程中的模型检查点
- 跟踪不同版本的模型参数
- 在训练中断后从特定检查点恢复
- 比较不同检查点版本的性能
开发者体验优化
推理统计细化
现在 GenAI API 会按模态(modality)提供细化的 token 计数统计。这意味着开发者可以获取文本、图像等不同输入输出类型的 token 使用情况明细,有助于更好地理解和优化 API 使用成本。
工具配置增强
在 ToolConfig 中新增了 retrieval_config 配置项,支持在 v1 和 v1beta1 API 版本中使用。这为检索增强生成(RAG)等场景提供了更灵活的配置选项。
总结
Google Cloud Go AI Platform v1.71.0 版本通过多项新功能和改进,进一步强化了机器学习模型的部署、推理和管理能力。从性能优化到安全性增强,再到开发者体验的提升,这些变化使得 AI Platform 更适合生产环境中的复杂机器学习工作负载。特别是对生成式 AI 和大语言模型的支持增强,反映了当前 AI 技术发展的趋势和实际需求。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









