OpenJ9项目中DoubleToDecimalTest测试超时问题的技术分析
问题背景
在OpenJ9项目的持续集成测试中,发现了一个关于jdk/internal/math/ToDecimal/DoubleToDecimalTest.java测试用例的超时问题。该问题主要出现在aarch64和x86架构的Linux/Mac系统上,且与Balanced GC策略相关。测试会在执行过程中卡住,最终因超时而失败。
问题现象
测试失败时,线程堆栈显示主线程卡在jdk.internal.math.FloatingDecimal$ASCIIToBinaryBuffer.doubleValue方法中。从多个失败的测试日志中可以看到,测试在处理特定数值"9.999999999999E82"时会出现问题。
技术分析
1. 测试用例分析
DoubleToDecimalTest测试主要验证浮点数到十进制字符串的转换功能。测试包含多个子测试,其中testPowersOf10子测试会遍历约130万个不同的测试值。正常情况下,整个测试执行时间约为65秒,其中testPowersOf10部分约占20%的时间。
2. 根本原因定位
经过深入分析,发现问题出在FDBigInteger.mult方法的JIT编译过程中。该方法包含一个嵌套循环结构,用于执行大整数乘法运算。在Scorching优化级别下,JIT编译器对循环进行了不正确的优化。
具体来说,问题出现在循环步幅(LoopStrider)优化阶段。编译器错误地将数组数据地址计算(dst[i + s2Len])中的s2Len加法操作提升到了循环外部,但却遗漏了s2Len的加法部分(在本例中s2Len是常量24)。这导致计算结果错误,进而引发了后续的无限循环。
3. 代码细节
问题方法的核心代码如下:
private static void mult(int[] s1, int s1Len, int[] s2, int s2Len, int[] dst) {
for (int i = 0; i < s1Len; i++) { // 外层循环
long v = s1[i] & LONG_MASK;
long p = 0L;
for (int j = 0; j < s2Len; j++) { // 内层循环
p += (dst[i + j] & LONG_MASK) + v * (s2[j] & LONG_MASK);
dst[i + j] = (int) p;
p >>>= 32;
}
dst[i + s2Len] = (int) p; // 问题出在这一行的地址计算
}
}
在优化前,dst[i + s2Len]的地址计算是完整的。但在优化后,编译器将dst的基地址提升到了循环外部的临时变量中,却错误地省略了s2Len的加法部分。
4. 潜在风险
除了已经发现的无限循环问题外,这种优化方式还存在另一个潜在风险:在OffHeap场景下,将数据地址指针(dataAddrPtr)存储在临时变量中,而循环体内又包含异步检查点(asynccheck),可能会触发GC。如果在GC发生时临时变量中仍持有数据地址指针,可能导致程序崩溃。
解决方案
针对这个问题,修复方案需要从以下几个方面考虑:
-
修正LoopStrider优化阶段对数组地址计算的处理,确保不会错误地省略必要的加法操作。
-
在OffHeap场景下,需要特别处理数据地址指针的存储方式,避免在可能触发GC的点上持有这类指针。
-
增加对类似优化模式的验证机制,确保优化后的代码语义与原始代码保持一致。
总结
这个案例展示了JIT编译器优化可能带来的微妙问题。即使在处理看似简单的循环结构时,优化也可能引入难以察觉的错误。对于虚拟机开发者而言,这类问题特别具有挑战性,因为它们通常只在特定条件下才会显现,且难以通过常规测试发现。
通过这个问题的分析,我们也看到在编译器优化过程中,对内存访问模式的正确处理至关重要。特别是在涉及数组访问和指针运算时,需要格外小心确保优化不会改变程序的原始语义。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00