探索未来驾驶:SNE-RoadSeg - 精准的自由空间检测利器
2024-05-22 06:12:53作者:韦蓉瑛
项目简介
欢迎来到SNE-RoadSeg,这是一个由ECCV 2020接受的官方PyTorch实现项目,其目标是利用表面法线信息进行语义分割,以提高道路自由空间检测的准确性。这个项目提供了KITTI Road Dataset的训练和测试设置,并附带了详细的Dockerfile,帮助您轻松搭建开发环境。
该项目的核心是一个高效的深度学习模型,它能够结合深度图与表面法线信息,生成高精度的道路分割预测。通过集成SNE(Surface Normal Estimation)模块,SNE-RoadSeg能更好地理解复杂的道路场景,为自动驾驶系统提供可靠的信息。
技术分析
SNE-RoadSeg借鉴了pytorch-CycleGAN-and-pix2pix的设计理念,但更注重于道路分割任务。其主要创新点在于引入了表面法线信息,增强了对三维空间的理解。在训练阶段,模型可以学习到如何从RGB图像中提取表面法线,然后将这些信息与原始图像融合,用于提升分割的准确度。在测试阶段,模型则可以直接应用学到的知识进行实时预测。
应用场景
SNE-RoadSeg的应用领域广泛,特别是在自动驾驶和智能交通系统中。它可以:
- 实时检测并预测车辆前方的无障碍区域,确保安全行驶。
- 提供精确的地图更新信息,支持高精度导航服务。
- 帮助研究人员分析复杂道路场景,优化自动驾驶算法。
项目特点
- 集成创新: 结合表面法线和深度信息,提高了道路分割的准确性。
- 高效实施: 采用PyTorch框架,易于理解和扩展。
- 全面支持: 包含完整的训练、测试脚本,以及预训练权重,快速上手。
- 卓越性能: 在Kitti测试集上的MaxF得分高达96.74,验证了其出色的泛化能力。
- 开放源码: 社区友好,鼓励开发者贡献和分享,持续进化。
为了您的研究或开发工作,我们强烈建议您尝试使用SNE-RoadSeg。它不仅是一项技术创新,也是推动自动驾驶领域前进的关键工具。在使用过程中,如果遇到任何问题,都可以参照项目文档,或直接联系团队获取帮助。最后,请在引用本项目时,不要忘记引用相关的学术论文哦!
@inproceedings{fan2020sne,
title = {{SNE-RoadSeg}: Incorporating surface normal information into semantic segmentation for accurate freespace detection},
author = {Fan, Rui and Wang, Hengli and Cai, Peide and Liu, Ming},
booktitle = {European Conference on Computer Vision},
pages = {340--356},
year = {2020},
organization = {Springer}
}
现在就加入SNE-RoadSeg的旅程,开启一段全新的智能驾驶探索之旅吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328