探索未来驾驶:SNE-RoadSeg - 精准的自由空间检测利器
2024-05-22 06:12:53作者:韦蓉瑛
项目简介
欢迎来到SNE-RoadSeg,这是一个由ECCV 2020接受的官方PyTorch实现项目,其目标是利用表面法线信息进行语义分割,以提高道路自由空间检测的准确性。这个项目提供了KITTI Road Dataset的训练和测试设置,并附带了详细的Dockerfile,帮助您轻松搭建开发环境。
该项目的核心是一个高效的深度学习模型,它能够结合深度图与表面法线信息,生成高精度的道路分割预测。通过集成SNE(Surface Normal Estimation)模块,SNE-RoadSeg能更好地理解复杂的道路场景,为自动驾驶系统提供可靠的信息。
技术分析
SNE-RoadSeg借鉴了pytorch-CycleGAN-and-pix2pix的设计理念,但更注重于道路分割任务。其主要创新点在于引入了表面法线信息,增强了对三维空间的理解。在训练阶段,模型可以学习到如何从RGB图像中提取表面法线,然后将这些信息与原始图像融合,用于提升分割的准确度。在测试阶段,模型则可以直接应用学到的知识进行实时预测。
应用场景
SNE-RoadSeg的应用领域广泛,特别是在自动驾驶和智能交通系统中。它可以:
- 实时检测并预测车辆前方的无障碍区域,确保安全行驶。
- 提供精确的地图更新信息,支持高精度导航服务。
- 帮助研究人员分析复杂道路场景,优化自动驾驶算法。
项目特点
- 集成创新: 结合表面法线和深度信息,提高了道路分割的准确性。
- 高效实施: 采用PyTorch框架,易于理解和扩展。
- 全面支持: 包含完整的训练、测试脚本,以及预训练权重,快速上手。
- 卓越性能: 在Kitti测试集上的MaxF得分高达96.74,验证了其出色的泛化能力。
- 开放源码: 社区友好,鼓励开发者贡献和分享,持续进化。
为了您的研究或开发工作,我们强烈建议您尝试使用SNE-RoadSeg。它不仅是一项技术创新,也是推动自动驾驶领域前进的关键工具。在使用过程中,如果遇到任何问题,都可以参照项目文档,或直接联系团队获取帮助。最后,请在引用本项目时,不要忘记引用相关的学术论文哦!
@inproceedings{fan2020sne,
title = {{SNE-RoadSeg}: Incorporating surface normal information into semantic segmentation for accurate freespace detection},
author = {Fan, Rui and Wang, Hengli and Cai, Peide and Liu, Ming},
booktitle = {European Conference on Computer Vision},
pages = {340--356},
year = {2020},
organization = {Springer}
}
现在就加入SNE-RoadSeg的旅程,开启一段全新的智能驾驶探索之旅吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143