使用ytdl-sub解析YouTube剧集视频的系列与集数信息
2025-07-03 16:02:18作者:蔡丛锟
在YouTube上,许多节目仍然采用传统的季/集格式命名视频,例如《Taskmaster》和《Last Week Tonight》等节目。本文将介绍如何利用ytdl-sub工具来正确解析这些视频的季数和集数信息,并自动整理成适合媒体服务器(如Jellyfin)的格式。
问题背景
许多YouTube视频的标题包含季(Series/Season)和集(Episode)编号信息,例如"Series 1, Episode 6 - 'The last supper' | Full Episode | Taskmaster"。传统的ytdl-sub配置通常会将上传年份作为季数,这并不符合这类节目的实际季集结构。
解决方案
我们可以通过创建自定义预设(preset)来正确解析这些信息。以下是完整的实现方案:
1. 创建预设配置
在config.yml文件中添加以下预设配置:
presets:
TaskmasterPlaylist:
preset:
- "Jellyfin TV Show by Date" # 使用Jellyfin兼容的预设
- "best_video_quality" # 获取最佳视频质量
# 解析季数
season_number: >-
{
%array_at(
%regex_capture_many(
title,
[
"(?:Series|Season) ([0-9]+)"
],
["0"]
),
1
)
}
# 格式化季数为两位数
season_number_padded: >-
{ %pad(season_number, 2, "0") }
# 解析集数
episode_number: >-
{
%array_at(
%regex_capture_many(
title,
[
"Episode ([0-9]+)"
],
["0"]
),
1
)
}
# 格式化集数为两位数
episode_number_padded: >-
{ %pad(episode_number, 2, "0") }
# 生成文件名格式
episode_file_name: "S{season_number_padded}E{episode_number_padded}"
2. 订阅配置
在subscriptions.yml文件中,可以简单地引用这个预设:
TaskmasterPlaylist:
= Game-Show:
"Taskmaster": "https://www.youtube.com/playlist?list=..."
3. 优化元数据处理(可选)
如果节目在TMDB等数据库中有完整信息,可以禁用不必要的元数据文件生成:
# 禁用NFO文件生成
nfo_tags:
enable: False
overrides:
# 不下载横幅
tv_show_fanart_file_name: ""
# 不下载海报
tv_show_poster_file_name: ""
# 不下载缩略图
thumbnail_name: ""
技术解析
-
正则表达式捕获:使用
%regex_capture_many
函数从标题中提取季数和集数信息。正则表达式(?:Series|Season) ([0-9]+)
匹配"Series"或"Season"后的数字,Episode ([0-9]+)
匹配集数。 -
数组处理:
%array_at
函数用于从捕获结果中提取特定位置的匹配项。 -
数字格式化:
%pad
函数确保季数和集数以两位数显示(如S01E06)。 -
文件名生成:最终生成标准的季集格式文件名,如S01E06.webm。
优势
- 自动化处理:自动从视频标题中提取正确的季集信息,无需手动干预。
- 兼容性:生成的文件名和元数据与Jellyfin等媒体服务器完美兼容。
- 灵活性:正则表达式可以根据不同节目的标题格式进行调整。
通过这种配置,ytdl-sub能够智能地解析YouTube上传统季集结构的节目,为媒体服务器提供结构化的视频库,大大简化了视频管理的复杂度。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.92 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
929
553

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8