使用ytdl-sub解析YouTube剧集视频的系列与集数信息
2025-07-03 00:00:16作者:蔡丛锟
在YouTube上,许多节目仍然采用传统的季/集格式命名视频,例如《Taskmaster》和《Last Week Tonight》等节目。本文将介绍如何利用ytdl-sub工具来正确解析这些视频的季数和集数信息,并自动整理成适合媒体服务器(如Jellyfin)的格式。
问题背景
许多YouTube视频的标题包含季(Series/Season)和集(Episode)编号信息,例如"Series 1, Episode 6 - 'The last supper' | Full Episode | Taskmaster"。传统的ytdl-sub配置通常会将上传年份作为季数,这并不符合这类节目的实际季集结构。
解决方案
我们可以通过创建自定义预设(preset)来正确解析这些信息。以下是完整的实现方案:
1. 创建预设配置
在config.yml文件中添加以下预设配置:
presets:
TaskmasterPlaylist:
preset:
- "Jellyfin TV Show by Date" # 使用Jellyfin兼容的预设
- "best_video_quality" # 获取最佳视频质量
# 解析季数
season_number: >-
{
%array_at(
%regex_capture_many(
title,
[
"(?:Series|Season) ([0-9]+)"
],
["0"]
),
1
)
}
# 格式化季数为两位数
season_number_padded: >-
{ %pad(season_number, 2, "0") }
# 解析集数
episode_number: >-
{
%array_at(
%regex_capture_many(
title,
[
"Episode ([0-9]+)"
],
["0"]
),
1
)
}
# 格式化集数为两位数
episode_number_padded: >-
{ %pad(episode_number, 2, "0") }
# 生成文件名格式
episode_file_name: "S{season_number_padded}E{episode_number_padded}"
2. 订阅配置
在subscriptions.yml文件中,可以简单地引用这个预设:
TaskmasterPlaylist:
= Game-Show:
"Taskmaster": "https://www.youtube.com/playlist?list=..."
3. 优化元数据处理(可选)
如果节目在TMDB等数据库中有完整信息,可以禁用不必要的元数据文件生成:
# 禁用NFO文件生成
nfo_tags:
enable: False
overrides:
# 不下载横幅
tv_show_fanart_file_name: ""
# 不下载海报
tv_show_poster_file_name: ""
# 不下载缩略图
thumbnail_name: ""
技术解析
-
正则表达式捕获:使用
%regex_capture_many函数从标题中提取季数和集数信息。正则表达式(?:Series|Season) ([0-9]+)匹配"Series"或"Season"后的数字,Episode ([0-9]+)匹配集数。 -
数组处理:
%array_at函数用于从捕获结果中提取特定位置的匹配项。 -
数字格式化:
%pad函数确保季数和集数以两位数显示(如S01E06)。 -
文件名生成:最终生成标准的季集格式文件名,如S01E06.webm。
优势
- 自动化处理:自动从视频标题中提取正确的季集信息,无需手动干预。
- 兼容性:生成的文件名和元数据与Jellyfin等媒体服务器完美兼容。
- 灵活性:正则表达式可以根据不同节目的标题格式进行调整。
通过这种配置,ytdl-sub能够智能地解析YouTube上传统季集结构的节目,为媒体服务器提供结构化的视频库,大大简化了视频管理的复杂度。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137