在DeepDoctection中集成YOLOv10模型进行文档布局分析
DeepDoctection是一个强大的文档理解和分析工具包,它提供了丰富的功能来处理各种文档处理任务。本文将详细介绍如何在DeepDoctection中集成YOLOv10模型作为文档布局分析器(ImageLayoutService),实现自定义的文档元素检测功能。
YOLOv10模型集成概述
YOLOv10是目标检测领域的最新进展之一,相比前代模型在速度和精度上都有显著提升。在文档分析场景中,我们可以利用YOLOv10来检测文档中的各种元素,如标题、段落、表格、页眉页脚等。
DeepDoctection的架构设计允许用户通过编写自定义包装器来集成第三方模型。对于YOLOv10,我们需要创建一个继承自ObjectDetector的类,并实现必要的接口方法。
核心实现步骤
1. 结果转换函数
首先需要编写一个函数将YOLO的原始输出转换为DeepDoctection的DetectionResult格式:
def _yolo_to_detectresult(results, categories) -> list[DetectionResult]:
all_results = []
categories_name = categories.get_categories(as_dict=True)
confidence = results.speed.get('inference', 0) / 100
for i, box in enumerate(results.boxes):
x1, y1, x2, y2 = box.xyxy.tolist()[0]
class_id = int(box.cls)+1
class_name = categories_name.get(class_id, "Unknown")
detection = DetectionResult(
box=[x1, y1, x2, y2],
score=confidence,
class_id=class_id,
class_name=class_name
)
all_results.append(detection)
return all_results
这个函数处理YOLO的检测结果,提取边界框坐标和类别信息,并使用推理速度作为置信度分数。
2. 预测函数
接下来是封装YOLO模型预测的函数:
def predict_yolo(np_img: PixelValues, model, conf_threshold: float,
iou_threshold: float, categories:ModelCategories) -> list[DetectionResult]:
results = model(source=np_img, conf=conf_threshold, iou=iou_threshold)[0]
return _yolo_to_detectresult(results, categories)
3. 自定义检测器类
核心部分是创建YoloDetector类,继承自ObjectDetector:
class YoloDetector(ObjectDetector):
def __init__(self, conf_threshold: float = 0.2,
iou_threshold: float = 0.8,
model_weights: PathLikeOrStr = None,
categories: Mapping[int, TypeOrStr] = None) -> None:
self.name = "yolo_detector"
self.model_id = self.get_model_id()
self.conf_threshold = conf_threshold
self.iou_threshold = iou_threshold
self.model = YOLO(model_weights)
if categories is None:
raise ValueError("必须提供类别映射字典")
self.categories = ModelCategories(init_categories=categories)
def predict(self, np_img: PixelValues) -> list[DetectionResult]:
return predict_yolo(np_img, self.model, self.conf_threshold,
self.iou_threshold, self.categories)
def clone(self) -> YoloDetector:
return self.__class__(conf_threshold=self.conf_threshold,
iou_threshold=self.iou_threshold,
model_weights=self.model.model_path)
def get_category_names(self) -> tuple[ObjectTypes, ...]:
return self.categories.get_categories(as_dict=False)
使用注意事项
-
类别命名规范:DeepDoctection内部会将所有字符串转换为小写,因此注册自定义类别时需要注意命名一致性。
-
模型注册:使用前需要在DeepDoctection中注册模型:
dd.ModelCatalog.register(model_name, dd.ModelProfile(
name=model_name,
description="YOLOv10模型用于布局分析",
tp_model=False,
size=[],
categories={
1: LayoutType.CAPTION,
2: LayoutType.FOOTNOTE,
# 其他类别映射...
},
model_wrapper="YoloDetector"
))
- 类别映射:建议尽可能使用DeepDoctection内置的LayoutType枚举,避免自定义类别带来的兼容性问题。
性能优化建议
-
可以根据实际场景调整置信度阈值和IoU阈值,平衡检测精度和召回率。
-
对于特定文档类型,可以微调YOLOv10模型以获得更好的检测效果。
-
考虑使用更轻量级的YOLOv10变体(如nano或small版本)以提高推理速度。
总结
通过上述方法,我们成功将YOLOv10模型集成到DeepDoctection框架中,扩展了其文档布局分析能力。这种集成方式不仅适用于YOLOv10,也可以作为其他目标检测模型集成到DeepDoctection的参考模板。
这种灵活的设计使得DeepDoctection能够不断吸收最新的计算机视觉研究成果,同时保持核心框架的稳定性,为用户提供了强大的文档处理能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00