在DeepDoctection中集成YOLOv10模型进行文档布局分析
DeepDoctection是一个强大的文档理解和分析工具包,它提供了丰富的功能来处理各种文档处理任务。本文将详细介绍如何在DeepDoctection中集成YOLOv10模型作为文档布局分析器(ImageLayoutService),实现自定义的文档元素检测功能。
YOLOv10模型集成概述
YOLOv10是目标检测领域的最新进展之一,相比前代模型在速度和精度上都有显著提升。在文档分析场景中,我们可以利用YOLOv10来检测文档中的各种元素,如标题、段落、表格、页眉页脚等。
DeepDoctection的架构设计允许用户通过编写自定义包装器来集成第三方模型。对于YOLOv10,我们需要创建一个继承自ObjectDetector的类,并实现必要的接口方法。
核心实现步骤
1. 结果转换函数
首先需要编写一个函数将YOLO的原始输出转换为DeepDoctection的DetectionResult格式:
def _yolo_to_detectresult(results, categories) -> list[DetectionResult]:
all_results = []
categories_name = categories.get_categories(as_dict=True)
confidence = results.speed.get('inference', 0) / 100
for i, box in enumerate(results.boxes):
x1, y1, x2, y2 = box.xyxy.tolist()[0]
class_id = int(box.cls)+1
class_name = categories_name.get(class_id, "Unknown")
detection = DetectionResult(
box=[x1, y1, x2, y2],
score=confidence,
class_id=class_id,
class_name=class_name
)
all_results.append(detection)
return all_results
这个函数处理YOLO的检测结果,提取边界框坐标和类别信息,并使用推理速度作为置信度分数。
2. 预测函数
接下来是封装YOLO模型预测的函数:
def predict_yolo(np_img: PixelValues, model, conf_threshold: float,
iou_threshold: float, categories:ModelCategories) -> list[DetectionResult]:
results = model(source=np_img, conf=conf_threshold, iou=iou_threshold)[0]
return _yolo_to_detectresult(results, categories)
3. 自定义检测器类
核心部分是创建YoloDetector类,继承自ObjectDetector:
class YoloDetector(ObjectDetector):
def __init__(self, conf_threshold: float = 0.2,
iou_threshold: float = 0.8,
model_weights: PathLikeOrStr = None,
categories: Mapping[int, TypeOrStr] = None) -> None:
self.name = "yolo_detector"
self.model_id = self.get_model_id()
self.conf_threshold = conf_threshold
self.iou_threshold = iou_threshold
self.model = YOLO(model_weights)
if categories is None:
raise ValueError("必须提供类别映射字典")
self.categories = ModelCategories(init_categories=categories)
def predict(self, np_img: PixelValues) -> list[DetectionResult]:
return predict_yolo(np_img, self.model, self.conf_threshold,
self.iou_threshold, self.categories)
def clone(self) -> YoloDetector:
return self.__class__(conf_threshold=self.conf_threshold,
iou_threshold=self.iou_threshold,
model_weights=self.model.model_path)
def get_category_names(self) -> tuple[ObjectTypes, ...]:
return self.categories.get_categories(as_dict=False)
使用注意事项
-
类别命名规范:DeepDoctection内部会将所有字符串转换为小写,因此注册自定义类别时需要注意命名一致性。
-
模型注册:使用前需要在DeepDoctection中注册模型:
dd.ModelCatalog.register(model_name, dd.ModelProfile(
name=model_name,
description="YOLOv10模型用于布局分析",
tp_model=False,
size=[],
categories={
1: LayoutType.CAPTION,
2: LayoutType.FOOTNOTE,
# 其他类别映射...
},
model_wrapper="YoloDetector"
))
- 类别映射:建议尽可能使用DeepDoctection内置的LayoutType枚举,避免自定义类别带来的兼容性问题。
性能优化建议
-
可以根据实际场景调整置信度阈值和IoU阈值,平衡检测精度和召回率。
-
对于特定文档类型,可以微调YOLOv10模型以获得更好的检测效果。
-
考虑使用更轻量级的YOLOv10变体(如nano或small版本)以提高推理速度。
总结
通过上述方法,我们成功将YOLOv10模型集成到DeepDoctection框架中,扩展了其文档布局分析能力。这种集成方式不仅适用于YOLOv10,也可以作为其他目标检测模型集成到DeepDoctection的参考模板。
这种灵活的设计使得DeepDoctection能够不断吸收最新的计算机视觉研究成果,同时保持核心框架的稳定性,为用户提供了强大的文档处理能力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









