Synet框架快速入门指南
2024-09-26 19:00:33作者:董灵辛Dennis
Synet是一个轻量级的神经网络推理框架,专为CPU设计,旨在提供高效的单线程性能,并且对其他深度学习框架训练的模型具有良好的兼容性。本指南将引导您了解其基本结构、关键文件以及如何开始使用。
1. 项目目录结构及介绍
Synet项目的目录布局精心设计,以支持简洁和高效的开发流程。以下是主要的目录及它们所包含的内容概述:
- SYNET/
├── src/ # 核心源代码文件,包括神经网络的推理逻辑。
├── data/ # 可能存放测试数据或预训练模型的数据文件夹。
├── test/ # 测试应用程序的源代码,用于验证框架的功能。
├── build.sh # 构建脚本,用于自动化编译过程。
├── check.sh # 自动检查所有测试正确性的脚本。
├── perf.sh # 性能比较脚本,用于比较Synet与其他框架的执行速度。
├── prec.sh # 精度测试脚本,验证模型的精度。
├── quant.sh # 量化脚本,用于FP32模型转换成INT8模型的处理。
├── stab.sh # 稳定性测试相关脚本。
├── test_[module].sh # 分别针对不同功能(如inference engine, ONNX)的测试脚本。
├── LICENSE # 许可证文件,说明软件使用的MIT许可条款。
├── README.md # 项目的主要读我文件,包含安装与快速开始指导。
2. 项目启动文件介绍
在Synet中,并不存在一个传统的“启动文件”如main.cpp
,因为它主要是通过构建脚本来驱动不同的应用场景。然而,核心运行流程通常始于应用层调用,比如通过编写使用Synet API的测试程序来启动推理任务。对于开发者来说,关注点可能集中在src
目录下的代码,以及通过构建脚本生成的特定测试应用,例如test_inference_engine.sh
、test_onnx.sh
等,这些可以视为启动特定功能的“入口”。
3. 项目的配置文件介绍
Synet依赖于外部命令行参数而非单独的配置文件来进行设置和配置。构建和测试过程中的配置主要通过运行build.sh
、各个.sh
测试脚本时传递的参数进行。例如,当使用test_inference_engine.sh
进行OpenVINO模型到Synet模型的转换时,模型路径、格式等信息作为命令行参数指定。这种做法保持了项目的灵活性,同时也简化了配置管理。
如何开始
-
克隆仓库: 使用Git克隆项目到本地:
git clone -b master --recurse-submodules -v https://github.com/ermig1979/Synet
-
构建项目: 进入项目目录并运行提供的构建脚本:
cd Synet ./build.sh
-
执行测试: 构建完成后,你可以使用相应的测试脚本,如
./test_inference_engine.sh
来启动特定的测试,或者调整check.sh
、perf.sh
等以符合你的需求进行测试和评估。
请注意,实际操作中,根据您的具体目标和环境设置,可能还需要额外的依赖项配置和环境变量设置。务必参考项目中的README.md
文件获取详细指引。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
165
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
563

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
408
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
71

无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
14
1