Synet框架快速入门指南
2024-09-26 04:11:51作者:董灵辛Dennis
Synet是一个轻量级的神经网络推理框架,专为CPU设计,旨在提供高效的单线程性能,并且对其他深度学习框架训练的模型具有良好的兼容性。本指南将引导您了解其基本结构、关键文件以及如何开始使用。
1. 项目目录结构及介绍
Synet项目的目录布局精心设计,以支持简洁和高效的开发流程。以下是主要的目录及它们所包含的内容概述:
- SYNET/
├── src/ # 核心源代码文件,包括神经网络的推理逻辑。
├── data/ # 可能存放测试数据或预训练模型的数据文件夹。
├── test/ # 测试应用程序的源代码,用于验证框架的功能。
├── build.sh # 构建脚本,用于自动化编译过程。
├── check.sh # 自动检查所有测试正确性的脚本。
├── perf.sh # 性能比较脚本,用于比较Synet与其他框架的执行速度。
├── prec.sh # 精度测试脚本,验证模型的精度。
├── quant.sh # 量化脚本,用于FP32模型转换成INT8模型的处理。
├── stab.sh # 稳定性测试相关脚本。
├── test_[module].sh # 分别针对不同功能(如inference engine, ONNX)的测试脚本。
├── LICENSE # 许可证文件,说明软件使用的MIT许可条款。
├── README.md # 项目的主要读我文件,包含安装与快速开始指导。
2. 项目启动文件介绍
在Synet中,并不存在一个传统的“启动文件”如main.cpp,因为它主要是通过构建脚本来驱动不同的应用场景。然而,核心运行流程通常始于应用层调用,比如通过编写使用Synet API的测试程序来启动推理任务。对于开发者来说,关注点可能集中在src目录下的代码,以及通过构建脚本生成的特定测试应用,例如test_inference_engine.sh、test_onnx.sh等,这些可以视为启动特定功能的“入口”。
3. 项目的配置文件介绍
Synet依赖于外部命令行参数而非单独的配置文件来进行设置和配置。构建和测试过程中的配置主要通过运行build.sh、各个.sh测试脚本时传递的参数进行。例如,当使用test_inference_engine.sh进行OpenVINO模型到Synet模型的转换时,模型路径、格式等信息作为命令行参数指定。这种做法保持了项目的灵活性,同时也简化了配置管理。
如何开始
-
克隆仓库: 使用Git克隆项目到本地:
git clone -b master --recurse-submodules -v https://github.com/ermig1979/Synet -
构建项目: 进入项目目录并运行提供的构建脚本:
cd Synet ./build.sh -
执行测试: 构建完成后,你可以使用相应的测试脚本,如
./test_inference_engine.sh来启动特定的测试,或者调整check.sh、perf.sh等以符合你的需求进行测试和评估。
请注意,实际操作中,根据您的具体目标和环境设置,可能还需要额外的依赖项配置和环境变量设置。务必参考项目中的README.md文件获取详细指引。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1