OpenBMB/OmniLMM项目中使用A100 GPU进行全参数微调的内存优化方案
2025-05-11 18:57:00作者:范靓好Udolf
在OpenBMB/OmniLMM项目中进行大语言模型的全参数微调时,许多开发者遇到了GPU内存不足的问题。特别是使用两块40GB显存的A100显卡时,即使采用了DeepSpeed的zero2或zero3优化策略,仍然会出现显存溢出的情况。
问题分析
大语言模型的全参数微调对显存需求极高,主要原因包括:
- 模型参数本身占用大量显存
- 优化器状态(如Adam优化器)需要存储额外的参数
- 前向传播和反向传播过程中产生的中间激活值
虽然官方文档中提供了模型微调内存使用统计表,但实际运行环境中的各种因素可能导致内存消耗超出预期。
解决方案:DeepSpeed Zero3优化策略
DeepSpeed的Zero Redundancy Optimizer(ZeRO)第三阶段(Zero3)可以有效解决这个问题。Zero3通过以下机制优化内存使用:
- 参数分区:将模型参数分割到多个GPU上,每个GPU只存储部分参数
- 优化器状态分区:同样将优化器状态分割到多个GPU
- 梯度分区:在反向传播过程中,梯度也被分区存储
关键配置参数
在DeepSpeed配置文件中,需要进行如下设置:
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
}
}
配置说明
- stage 3:启用ZeRO第三阶段优化
- offload_optimizer:将优化器状态卸载到CPU内存
device: "cpu" 指定卸载目标pin_memory: true 启用内存锁定,加速CPU-GPU数据传输
- offload_param:将模型参数卸载到CPU内存
- 同样使用
pin_memory加速访问
- 同样使用
性能考量
虽然这种配置可以显著减少GPU显存使用,但需要注意:
- CPU-GPU数据传输会增加一定的计算开销
pin_memory会占用部分CPU内存,但能提高数据传输效率- 在实际应用中可能需要调整batch size以找到最佳平衡点
实践建议
对于使用两块A100显卡的用户,建议:
- 首先尝试上述配置
- 监控GPU和CPU内存使用情况
- 根据实际资源情况调整batch size
- 考虑使用梯度累积进一步降低显存需求
通过合理配置DeepSpeed的ZeRO优化策略,即使是资源有限的开发者也能成功进行大语言模型的全参数微调。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
246
2.42 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
88
React Native鸿蒙化仓库
JavaScript
216
293
仓颉编程语言测试用例。
Cangjie
34
78
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
354
1.68 K
暂无简介
Dart
542
118
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
592
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
406
Ascend Extension for PyTorch
Python
82
116