Harvester 单节点升级过程中镜像拉取问题分析与解决
问题现象
在将单节点 Harvester 从 v1.4.2 升级到 v1.5.0-rc4 版本的过程中,系统在"下载升级镜像"阶段停滞不前。通过检查发现,upgradelog-infra-fluentbit Pod 处于 ImagePullBackOff 状态,无法正常拉取所需的容器镜像。
环境背景
该问题出现在以下环境中:
- 基础版本:Harvester v1.4.2
- 目标版本:v1.5.0-rc4
- 部署方式:单节点裸金属服务器
- 相关组件:Rancher v2.10.2 管理
问题分析
通过对支持包和日志的分析,发现主要问题集中在以下几个方面:
-
镜像拉取失败:系统无法从公共镜像仓库拉取 fluent/fluent-bit:2.1.8 镜像,导致升级流程中断。
-
版本同步问题:在升级过程中,系统报告"versions.harvesterhci.io 'v1.5.0-rc4' not found"错误,表明版本同步机制存在问题。
-
网络连通性:虽然基础网络测试(ping 8.8.8.8 和 Google)显示正常,但特定镜像仓库的访问可能存在间歇性问题。
根本原因
深入分析后,确定问题的主要原因是:
-
镜像缓存问题:系统中已有的旧版本镜像可能与新版本升级流程产生冲突。
-
版本同步延迟:Harvester 的版本同步器每小时运行一次,可能导致在升级开始时版本信息尚未完全同步。
-
镜像源稳定性:公共镜像仓库的访问可能受到速率限制或临时不可用影响。
解决方案
经过多次测试验证,以下解决方案被证明有效:
-
清理旧镜像:手动删除以下三个与日志收集相关的镜像:
- fluent/fluent-bit:2.1.8
- ghcr.io/kube-logging/fluentd:v1.15-ruby3
- ghcr.io/kube-logging/config-reloader:v0.0.5
-
重新启动升级:在清理镜像后重新启动升级流程,系统能够顺利完成镜像下载和升级过程。
-
网络检查:确保升级环境具有稳定的互联网连接,特别是对公共镜像仓库的访问。
最佳实践建议
为避免类似问题,建议在升级前执行以下步骤:
- 检查并清理可能产生冲突的旧版本镜像。
- 验证所有必需镜像仓库的网络连通性。
- 确保系统时间同步准确,避免证书验证问题。
- 在低峰期执行升级操作,减少被镜像仓库限速的风险。
- 对于生产环境,考虑预先下载所需镜像到本地镜像仓库。
总结
Harvester 的升级过程依赖于多个外部镜像仓库的可用性。当遇到升级卡顿时,管理员应首先检查相关 Pod 的状态和日志,重点关注镜像拉取情况。通过合理的预处理和问题排查,可以显著提高升级成功率。对于关键业务环境,建议建立镜像缓存机制,减少对外部仓库的依赖。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~045CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









