Harvester 单节点升级过程中镜像拉取问题分析与解决
问题现象
在将单节点 Harvester 从 v1.4.2 升级到 v1.5.0-rc4 版本的过程中,系统在"下载升级镜像"阶段停滞不前。通过检查发现,upgradelog-infra-fluentbit Pod 处于 ImagePullBackOff 状态,无法正常拉取所需的容器镜像。
环境背景
该问题出现在以下环境中:
- 基础版本:Harvester v1.4.2
- 目标版本:v1.5.0-rc4
- 部署方式:单节点裸金属服务器
- 相关组件:Rancher v2.10.2 管理
问题分析
通过对支持包和日志的分析,发现主要问题集中在以下几个方面:
-
镜像拉取失败:系统无法从公共镜像仓库拉取 fluent/fluent-bit:2.1.8 镜像,导致升级流程中断。
-
版本同步问题:在升级过程中,系统报告"versions.harvesterhci.io 'v1.5.0-rc4' not found"错误,表明版本同步机制存在问题。
-
网络连通性:虽然基础网络测试(ping 8.8.8.8 和 Google)显示正常,但特定镜像仓库的访问可能存在间歇性问题。
根本原因
深入分析后,确定问题的主要原因是:
-
镜像缓存问题:系统中已有的旧版本镜像可能与新版本升级流程产生冲突。
-
版本同步延迟:Harvester 的版本同步器每小时运行一次,可能导致在升级开始时版本信息尚未完全同步。
-
镜像源稳定性:公共镜像仓库的访问可能受到速率限制或临时不可用影响。
解决方案
经过多次测试验证,以下解决方案被证明有效:
-
清理旧镜像:手动删除以下三个与日志收集相关的镜像:
- fluent/fluent-bit:2.1.8
- ghcr.io/kube-logging/fluentd:v1.15-ruby3
- ghcr.io/kube-logging/config-reloader:v0.0.5
-
重新启动升级:在清理镜像后重新启动升级流程,系统能够顺利完成镜像下载和升级过程。
-
网络检查:确保升级环境具有稳定的互联网连接,特别是对公共镜像仓库的访问。
最佳实践建议
为避免类似问题,建议在升级前执行以下步骤:
- 检查并清理可能产生冲突的旧版本镜像。
- 验证所有必需镜像仓库的网络连通性。
- 确保系统时间同步准确,避免证书验证问题。
- 在低峰期执行升级操作,减少被镜像仓库限速的风险。
- 对于生产环境,考虑预先下载所需镜像到本地镜像仓库。
总结
Harvester 的升级过程依赖于多个外部镜像仓库的可用性。当遇到升级卡顿时,管理员应首先检查相关 Pod 的状态和日志,重点关注镜像拉取情况。通过合理的预处理和问题排查,可以显著提高升级成功率。对于关键业务环境,建议建立镜像缓存机制,减少对外部仓库的依赖。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00