Harvester 单节点升级过程中镜像拉取问题分析与解决
问题现象
在将单节点 Harvester 从 v1.4.2 升级到 v1.5.0-rc4 版本的过程中,系统在"下载升级镜像"阶段停滞不前。通过检查发现,upgradelog-infra-fluentbit Pod 处于 ImagePullBackOff 状态,无法正常拉取所需的容器镜像。
环境背景
该问题出现在以下环境中:
- 基础版本:Harvester v1.4.2
- 目标版本:v1.5.0-rc4
- 部署方式:单节点裸金属服务器
- 相关组件:Rancher v2.10.2 管理
问题分析
通过对支持包和日志的分析,发现主要问题集中在以下几个方面:
-
镜像拉取失败:系统无法从公共镜像仓库拉取 fluent/fluent-bit:2.1.8 镜像,导致升级流程中断。
-
版本同步问题:在升级过程中,系统报告"versions.harvesterhci.io 'v1.5.0-rc4' not found"错误,表明版本同步机制存在问题。
-
网络连通性:虽然基础网络测试(ping 8.8.8.8 和 Google)显示正常,但特定镜像仓库的访问可能存在间歇性问题。
根本原因
深入分析后,确定问题的主要原因是:
-
镜像缓存问题:系统中已有的旧版本镜像可能与新版本升级流程产生冲突。
-
版本同步延迟:Harvester 的版本同步器每小时运行一次,可能导致在升级开始时版本信息尚未完全同步。
-
镜像源稳定性:公共镜像仓库的访问可能受到速率限制或临时不可用影响。
解决方案
经过多次测试验证,以下解决方案被证明有效:
-
清理旧镜像:手动删除以下三个与日志收集相关的镜像:
- fluent/fluent-bit:2.1.8
- ghcr.io/kube-logging/fluentd:v1.15-ruby3
- ghcr.io/kube-logging/config-reloader:v0.0.5
-
重新启动升级:在清理镜像后重新启动升级流程,系统能够顺利完成镜像下载和升级过程。
-
网络检查:确保升级环境具有稳定的互联网连接,特别是对公共镜像仓库的访问。
最佳实践建议
为避免类似问题,建议在升级前执行以下步骤:
- 检查并清理可能产生冲突的旧版本镜像。
- 验证所有必需镜像仓库的网络连通性。
- 确保系统时间同步准确,避免证书验证问题。
- 在低峰期执行升级操作,减少被镜像仓库限速的风险。
- 对于生产环境,考虑预先下载所需镜像到本地镜像仓库。
总结
Harvester 的升级过程依赖于多个外部镜像仓库的可用性。当遇到升级卡顿时,管理员应首先检查相关 Pod 的状态和日志,重点关注镜像拉取情况。通过合理的预处理和问题排查,可以显著提高升级成功率。对于关键业务环境,建议建立镜像缓存机制,减少对外部仓库的依赖。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0133
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00