Effective LLM Alignment Toolkit 使用指南
2025-04-19 04:02:10作者:胡易黎Nicole
1. 项目目录结构及介绍
Effective LLM Alignment Toolkit 的项目目录结构如下:
effective_llm_alignment/
├── accelerate/
│ ├── __init__.py
│ └── fsdp_gradop_config.yaml
├── deepspeed_configs/
│ └── ...
├── scripts/
│ ├── __init__.py
│ └── sft.py
├── src/
│ ├── __init__.py
│ ├── accelerate
│ ├── datasets
│ ├── prompts
│ ├── training
│ └── ...
├── training_configs/
│ └── sft/
│ └── sft-phi4-lora-GrandmasterRAG-v4.yaml
├── .gitignore
├── LICENSE
├── README.md
├── poetry.lock
└── pyproject.toml
目录说明:
accelerate/:包含加速训练的配置文件。deepspeed_configs/:存放 DeepSpeed 的配置文件。scripts/:包含启动训练脚本。src/:源代码目录,包含模型定义、数据处理、提示符优化等模块。training_configs/:训练配置文件目录。.gitignore:Git 忽略文件列表。LICENSE:项目许可证信息。README.md:项目说明文件。poetry.lock:Poetry 包管理工具的锁文件。pyproject.toml:项目配置文件。
2. 项目的启动文件介绍
项目的启动文件位于 scripts/ 目录下,例如 sft.py。该文件是启动训练脚本的入口,它将读取配置文件,并执行模型训练的相关操作。
启动脚本的基本使用方法如下:
PYTHONPATH="${PYTHONPATH}:src/" poetry run accelerate launch --config_file accelerate/fsdp_gradop_config.yaml scripts/sft.py training_configs/sft/sft-phi4-lora-GrandmasterRAG-v4.yaml
参数说明:
PYTHONPATH:设置 Python 搜索路径,以便能够找到src/目录下的模块。poetry run:使用 Poetry 管理项目依赖。accelerate launch:启动加速训练的命令。--config_file:指定加速训练的配置文件。scripts/sft.py:启动脚本文件。training_configs/sft/sft-phi4-lora-GrandmasterRAG-v4.yaml:训练配置文件。
3. 项目的配置文件介绍
项目的配置文件位于 training_configs/ 目录下,例如 sft/sft-phi4-lora-GrandmasterRAG-v4.yaml。配置文件使用 YAML 格式,定义了训练过程中的各种参数。
以下是一个配置文件的示例:
model_name_or_path: "unsloth/Meta-Llama-3.1-8B-Instruct"
dataset:
- "Vikhrmodels/GrandMaster-PRO-MAX"
- "Vikhrmodels/Grounded-RAG-RU-v2"
train_only_on_completions: True
per_device_train_batch_size: 1
per_device_eval_batch_size: 1
num_train_epochs: 1
save_strategy: "steps"
save_steps: 400
save_total_limit: 6
learning_rate: 0.00004
gradient_accumulation_steps: 8
gradient_checkpointing: True
logging_steps: 1
remove_unused_columns: False
dataloader_num_workers: 2
save_only_model: True
generate_eval_examples: True
use_liger: True
max_seq_length: 16000
evaluation_strategy: "steps"
eval_steps: 400
run_name: "sft-grndmrag-llama-3.1-unsloth-lora-256-qkvogud"
参数说明:
model_name_or_path:指定预训练模型的路径。dataset:训练数据集的路径列表。train_only_on_completions:是否只训练完整回答。per_device_train_batch_size:每个设备上的训练批次大小。per_device_eval_batch_size:每个设备上的评估批次大小。num_train_epochs:训练的轮数。save_strategy、save_steps、save_total_limit:模型保存的策略和步数限制。learning_rate:学习率。gradient_accumulation_steps:梯度累积的步数。gradient_checkpointing:是否开启梯度检查点。logging_steps:日志打印的步数。remove_unused_columns:是否移除未使用的列。dataloader_num_workers:数据加载器的工作线程数。save_only_model:是否只保存模型。generate_eval_examples:是否生成评估示例。use_liger:是否使用 Liger 内核。max_seq_length:最大序列长度。evaluation_strategy、eval_steps:评估策略和步数。run_name:运行名称。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
332
395
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
748
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246