Effective LLM Alignment Toolkit 使用指南
2025-04-19 00:22:17作者:胡易黎Nicole
1. 项目目录结构及介绍
Effective LLM Alignment Toolkit 的项目目录结构如下:
effective_llm_alignment/
├── accelerate/
│ ├── __init__.py
│ └── fsdp_gradop_config.yaml
├── deepspeed_configs/
│ └── ...
├── scripts/
│ ├── __init__.py
│ └── sft.py
├── src/
│ ├── __init__.py
│ ├── accelerate
│ ├── datasets
│ ├── prompts
│ ├── training
│ └── ...
├── training_configs/
│ └── sft/
│ └── sft-phi4-lora-GrandmasterRAG-v4.yaml
├── .gitignore
├── LICENSE
├── README.md
├── poetry.lock
└── pyproject.toml
目录说明:
accelerate/
:包含加速训练的配置文件。deepspeed_configs/
:存放 DeepSpeed 的配置文件。scripts/
:包含启动训练脚本。src/
:源代码目录,包含模型定义、数据处理、提示符优化等模块。training_configs/
:训练配置文件目录。.gitignore
:Git 忽略文件列表。LICENSE
:项目许可证信息。README.md
:项目说明文件。poetry.lock
:Poetry 包管理工具的锁文件。pyproject.toml
:项目配置文件。
2. 项目的启动文件介绍
项目的启动文件位于 scripts/
目录下,例如 sft.py
。该文件是启动训练脚本的入口,它将读取配置文件,并执行模型训练的相关操作。
启动脚本的基本使用方法如下:
PYTHONPATH="${PYTHONPATH}:src/" poetry run accelerate launch --config_file accelerate/fsdp_gradop_config.yaml scripts/sft.py training_configs/sft/sft-phi4-lora-GrandmasterRAG-v4.yaml
参数说明:
PYTHONPATH
:设置 Python 搜索路径,以便能够找到src/
目录下的模块。poetry run
:使用 Poetry 管理项目依赖。accelerate launch
:启动加速训练的命令。--config_file
:指定加速训练的配置文件。scripts/sft.py
:启动脚本文件。training_configs/sft/sft-phi4-lora-GrandmasterRAG-v4.yaml
:训练配置文件。
3. 项目的配置文件介绍
项目的配置文件位于 training_configs/
目录下,例如 sft/sft-phi4-lora-GrandmasterRAG-v4.yaml
。配置文件使用 YAML 格式,定义了训练过程中的各种参数。
以下是一个配置文件的示例:
model_name_or_path: "unsloth/Meta-Llama-3.1-8B-Instruct"
dataset:
- "Vikhrmodels/GrandMaster-PRO-MAX"
- "Vikhrmodels/Grounded-RAG-RU-v2"
train_only_on_completions: True
per_device_train_batch_size: 1
per_device_eval_batch_size: 1
num_train_epochs: 1
save_strategy: "steps"
save_steps: 400
save_total_limit: 6
learning_rate: 0.00004
gradient_accumulation_steps: 8
gradient_checkpointing: True
logging_steps: 1
remove_unused_columns: False
dataloader_num_workers: 2
save_only_model: True
generate_eval_examples: True
use_liger: True
max_seq_length: 16000
evaluation_strategy: "steps"
eval_steps: 400
run_name: "sft-grndmrag-llama-3.1-unsloth-lora-256-qkvogud"
参数说明:
model_name_or_path
:指定预训练模型的路径。dataset
:训练数据集的路径列表。train_only_on_completions
:是否只训练完整回答。per_device_train_batch_size
:每个设备上的训练批次大小。per_device_eval_batch_size
:每个设备上的评估批次大小。num_train_epochs
:训练的轮数。save_strategy
、save_steps
、save_total_limit
:模型保存的策略和步数限制。learning_rate
:学习率。gradient_accumulation_steps
:梯度累积的步数。gradient_checkpointing
:是否开启梯度检查点。logging_steps
:日志打印的步数。remove_unused_columns
:是否移除未使用的列。dataloader_num_workers
:数据加载器的工作线程数。save_only_model
:是否只保存模型。generate_eval_examples
:是否生成评估示例。use_liger
:是否使用 Liger 内核。max_seq_length
:最大序列长度。evaluation_strategy
、eval_steps
:评估策略和步数。run_name
:运行名称。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0117AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp课程中屏幕放大器知识点优化分析4 freeCodeCamp课程页面空白问题的技术分析与解决方案5 freeCodeCamp Cafe Menu项目中link元素的void特性解析6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp博客页面工作坊中的断言方法优化建议
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
222
2.25 K

暂无简介
Dart
525
116

React Native鸿蒙化仓库
JavaScript
210
286

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
581

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
93

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
42
0