Effective LLM Alignment Toolkit 使用指南
2025-04-19 04:02:10作者:胡易黎Nicole
1. 项目目录结构及介绍
Effective LLM Alignment Toolkit 的项目目录结构如下:
effective_llm_alignment/
├── accelerate/
│ ├── __init__.py
│ └── fsdp_gradop_config.yaml
├── deepspeed_configs/
│ └── ...
├── scripts/
│ ├── __init__.py
│ └── sft.py
├── src/
│ ├── __init__.py
│ ├── accelerate
│ ├── datasets
│ ├── prompts
│ ├── training
│ └── ...
├── training_configs/
│ └── sft/
│ └── sft-phi4-lora-GrandmasterRAG-v4.yaml
├── .gitignore
├── LICENSE
├── README.md
├── poetry.lock
└── pyproject.toml
目录说明:
accelerate/:包含加速训练的配置文件。deepspeed_configs/:存放 DeepSpeed 的配置文件。scripts/:包含启动训练脚本。src/:源代码目录,包含模型定义、数据处理、提示符优化等模块。training_configs/:训练配置文件目录。.gitignore:Git 忽略文件列表。LICENSE:项目许可证信息。README.md:项目说明文件。poetry.lock:Poetry 包管理工具的锁文件。pyproject.toml:项目配置文件。
2. 项目的启动文件介绍
项目的启动文件位于 scripts/ 目录下,例如 sft.py。该文件是启动训练脚本的入口,它将读取配置文件,并执行模型训练的相关操作。
启动脚本的基本使用方法如下:
PYTHONPATH="${PYTHONPATH}:src/" poetry run accelerate launch --config_file accelerate/fsdp_gradop_config.yaml scripts/sft.py training_configs/sft/sft-phi4-lora-GrandmasterRAG-v4.yaml
参数说明:
PYTHONPATH:设置 Python 搜索路径,以便能够找到src/目录下的模块。poetry run:使用 Poetry 管理项目依赖。accelerate launch:启动加速训练的命令。--config_file:指定加速训练的配置文件。scripts/sft.py:启动脚本文件。training_configs/sft/sft-phi4-lora-GrandmasterRAG-v4.yaml:训练配置文件。
3. 项目的配置文件介绍
项目的配置文件位于 training_configs/ 目录下,例如 sft/sft-phi4-lora-GrandmasterRAG-v4.yaml。配置文件使用 YAML 格式,定义了训练过程中的各种参数。
以下是一个配置文件的示例:
model_name_or_path: "unsloth/Meta-Llama-3.1-8B-Instruct"
dataset:
- "Vikhrmodels/GrandMaster-PRO-MAX"
- "Vikhrmodels/Grounded-RAG-RU-v2"
train_only_on_completions: True
per_device_train_batch_size: 1
per_device_eval_batch_size: 1
num_train_epochs: 1
save_strategy: "steps"
save_steps: 400
save_total_limit: 6
learning_rate: 0.00004
gradient_accumulation_steps: 8
gradient_checkpointing: True
logging_steps: 1
remove_unused_columns: False
dataloader_num_workers: 2
save_only_model: True
generate_eval_examples: True
use_liger: True
max_seq_length: 16000
evaluation_strategy: "steps"
eval_steps: 400
run_name: "sft-grndmrag-llama-3.1-unsloth-lora-256-qkvogud"
参数说明:
model_name_or_path:指定预训练模型的路径。dataset:训练数据集的路径列表。train_only_on_completions:是否只训练完整回答。per_device_train_batch_size:每个设备上的训练批次大小。per_device_eval_batch_size:每个设备上的评估批次大小。num_train_epochs:训练的轮数。save_strategy、save_steps、save_total_limit:模型保存的策略和步数限制。learning_rate:学习率。gradient_accumulation_steps:梯度累积的步数。gradient_checkpointing:是否开启梯度检查点。logging_steps:日志打印的步数。remove_unused_columns:是否移除未使用的列。dataloader_num_workers:数据加载器的工作线程数。save_only_model:是否只保存模型。generate_eval_examples:是否生成评估示例。use_liger:是否使用 Liger 内核。max_seq_length:最大序列长度。evaluation_strategy、eval_steps:评估策略和步数。run_name:运行名称。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
89
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
337
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
437
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19