Frida API Fuzzer 开源项目教程
2025-05-28 19:45:37作者:宣聪麟
1. 项目介绍
Frida API Fuzzer 是一个基于 Frida 的实验性模糊测试工具,旨在用于 API 的内存模糊测试。它的设计灵感来源于 AFL/AFL++,并通过修改和扩展以适应 Frida 的特性。该项目能够帮助开发者在运行时对应用程序的二进制接口进行模糊测试,以发现潜在的问题。
2. 项目快速启动
环境准备
- 安装 Frida:
pip3 install -U frida - 确保你的系统架构为 x86_64,并且已经安装了 frida-tools。
编写测试 Harness
创建一个 JavaScript 文件作为你的测试 Harness。以下是一个简单的 Harness 示例:
// 引入 frida-fuzzer
var fuzz = require('./fuzz');
// 设置目标模块和函数
var TARGET_MODULE = "test_linux64";
var TARGET_FUNCTION = DebugSymbol.fromName("target_func").address;
// 函数的返回类型和参数类型
var RET_TYPE = "void";
var ARGS_TYPES = ['pointer', 'int'];
// 创建原生函数句柄
var func_handle = new NativeFunction(TARGET_FUNCTION, RET_TYPE, ARGS_TYPES, {
traps: 'all'
});
// 设置目标模块
fuzz.target_module = TARGET_MODULE;
// 分配内存用于存放 payload
var payload_mem = Memory.alloc(fuzz.config.MAX_FILE);
// 必须实现的测试函数
fuzz.fuzzer_test_one_input = function(payload) {
Memory.writeByteArray(payload_mem, payload, payload.length);
func_handle(payload_mem, payload.length);
};
编译 Harness
使用 frida-compile 工具编译 Harness 生成 agent:
frida-compile -x your_harness.js -o fuzzer-agent.js
运行模糊测试
使用以下命令启动模糊测试:
./frida-fuzzer -U -o output_folder/ target_application_identifier
其中 -U 参数表示连接到 USB 设备,-o 参数用于指定输出文件夹,最后的参数是目标应用程序的标识符。
3. 应用案例和最佳实践
案例分析
以一个 Android 应用为例,假设我们想模糊测试其本地共享库中的一个函数。首先,确保在模拟器或真实设备上具有 root 权限。接下来,按照以下步骤操作:
- 下载适用于 Android x86_64 的 frida-server 并推送到设备上。
- 在设备上启动 frida-server。
- 使用
adb安装测试应用。 - 编译 Harness 为
fuzzer-agent.js。 - 通过
frida-fuzzer命令开始模糊测试。
最佳实践
- 在开始模糊测试前,使用
system-config调整系统参数以提高测试效率。 - 增加
fuzz.config.QUEUE_CACHE_MAX_SIZE可以在 Android 设备上提高速度。 - 制定合理的测试计划,逐步扩大测试范围。
4. 典型生态项目
目前,Frida API Fuzzer 的生态项目还不是非常丰富,但是社区正在积极贡献。以下是一些值得关注的项目:
- frida-java-bridge:为 Frida 提供了对 Java 代码的模糊测试支持。
- frida-core:Frida 的核心库,可以用来开发更多基于 Frida 的模糊测试工具。
通过社区的努力,预计未来会有更多相关项目涌现,为模糊测试领域带来新的活力。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443