COLMAP项目中固定相机位置进行约束式束调整的技术解析
2025-05-27 05:45:06作者:廉皓灿Ida
背景介绍
在三维重建领域,COLMAP作为一款强大的开源软件,被广泛应用于从图像序列中恢复相机参数和场景几何结构。在实际应用中,我们经常会遇到这样的需求:在已有重建结果的基础上,需要添加新图像进行注册,同时确保原有重建结果保持不变。
问题场景
当我们需要将一组新图像注册到已有重建中时,通常会面临两种选择:
- 使用image_registrator仅注册新图像而不进行束调整,但精度有限
- 使用bundle_adjuster或mapper进行全局束调整,但这会改变原有重建结果
技术解决方案
方法一:使用mapper固定已有图像
COLMAP的mapper模块提供了直接解决方案,通过设置--Mapper.fix_existing_images 1
参数,可以在注册新图像时固定已有图像的位置和参数。这种方法适用于需要将新图像注册到已有重建中的场景。
使用方法:
colmap mapper ... --Mapper.fix_existing_images 1
方法二:自定义约束式束调整
对于更精细的控制需求,可以使用COLMAP的Python接口实现自定义的约束式束调整。核心思想是在优化问题中固定特定参数块:
- 对于需要固定的相机位姿:
problem.set_parameter_block_constant(image.cam_from_world.rotation.quat)
problem.set_parameter_block_constant(image.cam_from_world.translation)
- 对于需要固定的相机内参:
problem.set_parameter_block_constant(camera.params)
这种方法基于pyceres实现,提供了最大的灵活性,可以精确控制哪些参数参与优化,哪些参数保持固定。
技术实现原理
束调整(Bundle Adjustment)本质上是非线性最小二乘优化问题,通过调整相机参数和三维点位置最小化重投影误差。约束式束调整的关键在于:
- 参数块固定:将不希望改变的参数标记为常量,使其在优化过程中保持不变
- 部分优化:仅优化新添加的图像参数和可能的新三维点
- 误差计算:仍然考虑所有观测约束,但只更新允许变化的参数
应用建议
- 精度要求不高:直接使用image_registrator快速注册新图像
- 需要保持原有重建:使用mapper的fix_existing_images选项
- 需要精细控制:实现自定义束调整,精确指定固定参数
- 已有注册需要优化:使用约束式束调整优化新图像位姿
总结
COLMAP提供了多种级别的解决方案来处理固定部分相机位置的需求。理解这些方法的适用场景和实现原理,可以帮助我们根据具体需求选择最合适的技术方案,在保持已有重建精度的同时扩展重建范围。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44