GmSSL项目中SM4-ECB模式加密数据截断问题分析
问题现象
在使用GmSSL库进行SM4算法ECB模式加密时,开发者发现当输入数据包含中英文混合内容时,加密结果会出现数据截断现象。具体表现为加密后的数据只有前半部分有效,后半部分被填充为0值。而同样的代码在CBC模式下却能正常工作。
问题定位
通过分析开发者提供的代码片段,可以清晰地看到问题所在。核心问题出现在sms4_ecb_encrypt函数的调用方式上。该函数的第四个参数nblocks表示需要加密的数据块数量,而开发者直接设置为1,导致只加密了第一个16字节的数据块。
技术背景
SM4算法是中国相关密码管理机构发布的分组密码算法标准,采用128位分组长度和128位密钥长度。ECB(Electronic Codebook)模式是最基础的分组密码工作模式,它将明文分成固定大小的块,然后对每个块独立加密。
在ECB模式下,当处理超过一个分组长度的数据时,必须循环处理所有数据块。这与CBC模式不同,CBC模式由于存在链式反馈机制,通常实现上会自动处理所有数据块。
解决方案
正确的实现方式应该是根据输入数据的实际长度计算需要加密的块数,然后进行循环处理。以下是修正后的代码示例:
std::string Gmssl::sm4EcbEncode_pkcs7(const std::string& input, string keys)
{
sms4_key_t enc_key;
uint8_t *key= (unsigned char*)keys.c_str();
sms4_set_encrypt_key(&enc_key, key);
std::string paddedInput = pkcs7Padding(input);
size_t outputSize = ((paddedInput.length() + 15) / 16) * 16;
std::vector<unsigned char> outputBuffer(outputSize);
// 计算需要加密的块数
size_t blockCount = paddedInput.length() / 16;
sms4_ecb_encrypt(reinterpret_cast<const unsigned char*>(paddedInput.c_str()),
outputBuffer.data(),
&enc_key,
blockCount); // 传入实际的块数
std::string out=base64Encode(std::string(outputBuffer.begin(), outputBuffer.end()));
return out;
}
经验总结
-
在使用分组密码算法时,必须明确理解工作模式的特性。ECB模式需要显式处理每个数据块,而CBC等模式通常会内部处理块链式关系。
-
加密函数参数的理解至关重要。
nblocks参数直接影响加密的数据量,不当的设置会导致数据截断或加密不完整。 -
对于包含多字节字符(如中文)的数据,要特别注意数据长度的计算,确保填充和分块处理正确。
-
在实际开发中,建议对加密结果进行验证测试,包括不同长度的输入数据测试,特别是包含多字节字符的情况。
这个问题虽然看似简单,但反映了密码学编程中的一个重要原则:必须准确理解每个API参数的含义和影响。在安全相关的编程中,任何细节的疏忽都可能导致严重的安全隐患或功能异常。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00