深入解析Canal中DML过滤与行过滤的配置差异
概述
在阿里巴巴开源的Canal项目中,canal.instance.filter.query.dml和canal.instance.filter.rows是两个容易混淆的配置参数。本文将详细解析这两个参数的功能差异、使用场景以及它们之间的相互关系,帮助开发者更好地配置Canal数据同步服务。
参数功能解析
canal.instance.filter.query.dml
这个参数控制的是是否忽略MySQL在ROW模式下额外记录的原始DML SQL语句(QueryLogEvent)。当设置为true时,Canal会过滤掉这些SQL语句;设置为false则会保留。
在MySQL的ROW复制模式下,虽然主要记录的是行变更数据,但有时也会包含原始SQL语句作为补充信息。这个参数就是用来控制是否处理这些补充的SQL信息。
canal.instance.filter.rows
这个参数控制的是是否忽略具体的DML binlog事件,包括:
- WriteRowsLogEvent(插入操作)
- UpdateRowsLogEvent(更新操作)
- DeleteRowsLogEvent(删除操作)
当设置为true时,Canal会过滤掉所有的行变更事件;设置为false则会处理这些事件。这是控制数据同步的核心参数。
实际应用场景
场景一:仅需要行变更数据
如果只需要行变更的详细数据而不关心原始SQL语句,可以这样配置:
canal.instance.filter.query.dml = true
canal.instance.filter.rows = false
场景二:需要原始SQL和行变更数据
如果需要同时获取原始SQL和行变更数据,可以配置为:
canal.instance.filter.query.dml = false
canal.instance.filter.rows = false
场景三:仅需要原始SQL
如果只需要原始SQL而不需要行变更数据(不常见),可以配置为:
canal.instance.filter.query.dml = false
canal.instance.filter.rows = true
常见问题解答
-
为什么设置了
canal.instance.filter.rows = true就获取不到数据?因为
canal.instance.filter.rows控制的是行变更事件的过滤,设置为true会过滤掉所有DML操作的实际数据变更事件,自然就获取不到数据了。 -
为什么在ROW模式下看不到SQL语句?
在MySQL的ROW复制模式下,默认不会记录完整的SQL语句。
canal.instance.filter.query.dml控制的是那些偶尔出现的补充SQL信息,而不是主要的行变更数据。 -
如何只获取INSERT操作?
可以通过以下组合配置实现:
canal.instance.filter.dml.insert = false canal.instance.filter.dml.update = true canal.instance.filter.dml.delete = true canal.instance.filter.rows = false
最佳实践建议
-
在大多数ROW模式的应用场景下,
canal.instance.filter.rows应该保持为false,否则会丢失核心数据。 -
canal.instance.filter.query.dml可以根据是否需要原始SQL来决定,通常可以设置为true以减少不必要的数据传输。 -
对于精细化的DML操作过滤,应该使用
canal.instance.filter.dml.insert、canal.instance.filter.dml.update和canal.instance.filter.dml.delete这三个参数来控制。 -
在MySQL 5.7及以上版本中,ROW模式是推荐使用的binlog格式,此时原始SQL语句的获取会受到更多限制,开发者应该主要依赖行变更数据。
通过理解这些配置参数的实际含义和相互关系,开发者可以更精准地控制Canal的数据同步行为,满足各种业务场景的需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00