OpenSearch项目中的可写热存储与Composite Directory工厂模式解析
背景与问题概述
在OpenSearch分布式搜索和分析引擎中,Writable Warm功能是一项重要的存储优化特性。该功能允许将部分索引数据存储在远程存储系统中,同时保持数据的可写性。为了实现这一功能,开发团队引入了Composite Directory(复合目录)的概念,它能够抽象化数据的位置(本地或远程),并通过FileCache(文件缓存)机制进行管理。
然而,在当前的实现中存在一个设计上的局限性:Composite Directory的初始化是直接硬编码的,而不是通过工厂模式进行创建。这与OpenSearch中其他目录(如本地目录)的创建方式不一致,后者允许用户通过插件系统提供自定义实现。
技术痛点分析
当前Composite Directory的初始化方式如下:
directory = new CompositeDirectory(localDirectory, remoteDirectory, fileCache);
这种方式存在两个主要问题:
- 扩展性不足:用户无法像自定义本地目录那样提供自己的Composite Directory实现
- 设计不一致:与OpenSearch中其他目录组件的创建模式不统一
解决方案设计
为了解决上述问题,我们提出引入CompositeDirectoryFactory接口,其核心设计如下:
interface CompositeDirectoryFactory {
Directory newDirectory(IndexSettings indexSettings,
ShardPath shardPath,
DirectoryFactory localDirectoryFactory,
Directory remoteDirectory,
FileCache fileCache) throws IOException;
}
关键设计要点
-
插件化支持:通过扩展IndexStorePlugin接口,添加新的方法
getCompositeDirectoryFactories(),使Composite Directory工厂可被插件化实现 -
默认实现:提供DefaultCompositeDirectoryFactory作为默认实现,使用现有的CompositeDirectory类
-
配置支持:引入新的索引设置
index.composite_store.type,允许用户指定使用的Composite Directory工厂类型
技术实现细节
工厂模式的优势
采用工厂模式后,系统将获得以下优势:
- 解耦:将目录创建逻辑与使用逻辑分离
- 可扩展:用户可以通过插件提供自定义实现
- 一致性:与其他目录组件的创建方式保持一致
配置示例
用户可以在索引设置中指定Composite Directory类型:
{
"index": {
"composite_store": {
"type": "custom_implementation"
}
}
}
性能考量
虽然工厂模式会引入轻微的间接调用开销,但这种开销在现代JVM上几乎可以忽略不计。更重要的是,这种设计带来的灵活性和可维护性提升远大于微小的性能开销。
应用场景
这种改进特别适用于以下场景:
- 特殊存储需求:当用户需要特殊的本地-远程存储组合策略时
- 性能调优:当默认实现不能满足特定工作负载的性能需求时
- 实验性功能:当用户希望尝试新的缓存或存储策略时
总结
通过在OpenSearch中引入CompositeDirectoryFactory,我们不仅解决了现有设计的一致性问题,还为Writable Warm功能提供了更强的扩展能力。这种改进遵循了OpenSearch一贯的模块化和可扩展设计哲学,为未来的存储优化奠定了良好的基础。
对于OpenSearch用户来说,这意味着他们可以根据自己的特定需求定制存储行为,而不必受限于系统的默认实现。对于开发者来说,这提供了一个清晰的扩展点,可以更容易地实验和贡献新的存储优化方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00