brain.js 技术文档
2024-12-20 17:48:07作者:谭伦延
1. 安装指南
在 Node.js 中安装
如果你使用的是 Node.js 环境,可以通过 npm 安装 brain.js:
npm install brain
在浏览器中使用
在浏览器中使用时,需要下载最新的 brain.js 文件。由于训练过程计算量较大,建议在离线环境或使用 Worker 进行训练,然后通过 toFunction() 或 toJSON() 方法将预训练的网络导入到你的网站中。
2. 项目的使用说明
基本使用
brain.js 是一个 JavaScript 神经网络库,可以用于训练和运行简单的神经网络。以下是一个使用 brain.js 来近似 XOR 函数的示例:
var net = new brain.NeuralNetwork();
net.train([{input: [0, 0], output: [0]},
{input: [0, 1], output: [1]},
{input: [1, 0], output: [1]},
{input: [1, 1], output: [0]}]);
var output = net.run([1, 0]); // [0.987]
训练数据格式
每个训练数据应包含 input 和 output,它们可以是 0 到 1 之间的数组或对象。例如,颜色对比示例中的训练数据格式如下:
var net = new brain.NeuralNetwork();
net.train([{input: { r: 0.03, g: 0.7, b: 0.5 }, output: { black: 1 }},
{input: { r: 0.16, g: 0.09, b: 0.2 }, output: { white: 1 }},
{input: { r: 0.5, g: 0.5, b: 1.0 }, output: { white: 1 }}]);
var output = net.run({ r: 1, g: 0.4, b: 0 }); // { white: 0.99, black: 0.002 }
训练选项
train() 方法的第二个参数可以传入一个选项对象,用于控制训练过程:
net.train(data, {
errorThresh: 0.005, // 错误阈值
iterations: 20000, // 最大训练迭代次数
log: true, // 是否定期输出训练进度
logPeriod: 10, // 输出训练进度的间隔迭代次数
learningRate: 0.3 // 学习率
})
训练将在达到错误阈值或达到最大迭代次数时停止。
3. 项目API使用文档
train()
用于训练神经网络。接受一个包含训练数据的数组和一个选项对象。
run()
用于运行训练好的神经网络,接受一个输入数据并返回输出结果。
toJSON()
将神经网络的状态序列化为 JSON 格式,便于保存和加载。
fromJSON()
从 JSON 格式加载神经网络的状态。
toFunction()
生成一个独立的函数,该函数可以直接运行训练好的神经网络,无需导入 brain.js。
4. 项目安装方式
Node.js 安装
通过 npm 安装:
npm install brain
浏览器使用
下载最新的 brain.js 文件,并在页面中引入:
<script src="path/to/brain.js"></script>
使用 Stream 进行训练
可以通过创建 WriteStream 来使用流式数据进行训练。具体示例可以参考 stream-example.js 文件。
var trainStream = net.createTrainStream({
floodCallback: function() {
// 重新填充数据流
},
doneTrainingCallback: function(info) {
// 训练完成后的回调
}
});
通过 pipe() 方法将数据流连接到 trainStream,实现流式训练。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0118
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869