LMDeploy中VRAM释放问题的技术分析与解决方案
2025-06-03 06:03:58作者:戚魁泉Nursing
问题背景
在使用LMDeploy进行多模型图像描述任务时,开发者遇到了一个关键的技术挑战:在切换不同模型时无法有效释放显存(VRAM)。这个问题在需要连续加载多个大型视觉语言模型的应用场景中尤为突出,会导致显存不足而无法继续运行后续模型。
技术现象分析
当使用LMDeploy的pipeline加载InternVL2-40B-AWQ等大型视觉语言模型时,即使执行了以下标准显存释放操作:
- 调用pipe.close()关闭管道
- 删除相关对象引用
- 执行垃圾回收(gc.collect())
- 调用torch.cuda.empty_cache()清空CUDA缓存
显存仍然无法完全释放,仅从38.5GB降至27.1GB,剩余显存无法被后续模型重用。更严重的是,当尝试重新创建pipeline时,系统会因显存不足而尝试将模型卸载到磁盘,但由于未指定offload_folder参数而抛出异常。
根本原因
经过技术分析,发现当前LMDeploy版本(0.7.0.post2+)存在以下设计限制:
- pipe.close()方法仅关闭内部线程,不负责模型资源的释放
- 视觉语言模型中的组件(如InternVLVisionModel)在Python对象被删除后,其CUDA内存未得到彻底释放
- 缺乏显式的模型卸载接口,导致开发者无法主动控制显存回收
解决方案
LMDeploy开发团队已经通过PR #3069解决了这一问题,主要改进包括:
- 完善了pipeline的资源释放机制
- 增加了对模型组件的显式卸载支持
- 确保在关闭管道时能够彻底释放相关CUDA资源
最佳实践建议
对于需要在单个会话中切换多个模型的开发者,建议:
- 升级到包含此修复的新版本LMDeploy
- 在模型切换时,按顺序执行:
- 调用pipe.close()关闭当前管道
- 删除所有相关对象引用
- 执行显式垃圾回收
- 清空CUDA缓存
- 对于特别大的模型,可以考虑使用with语句管理pipeline生命周期,确保资源及时释放
技术展望
这一问题的解决不仅提升了LMDeploy在多模型场景下的可用性,也为后续开发提供了重要参考。未来可能会进一步优化:
- 更细粒度的显存管理策略
- 自动化的资源回收机制
- 对分布式推理场景的显存优化支持
通过这次技术改进,LMDeploy在处理复杂视觉语言任务时的稳定性和灵活性得到了显著提升。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C078
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
463
3.45 K
Ascend Extension for PyTorch
Python
270
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
187
77
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692