SolidStart 中 SharedWorker 导入导致 entry-client.tsx 重复执行的解决方案
在基于 SolidStart 框架开发多窗口数据共享应用时,开发者可能会遇到一个棘手的问题:当在不同组件中导入和使用 SharedWorker 时,会导致 entry-client.tsx 文件被重复执行。这种情况在普通的 Vite 项目中不会出现,是 SolidStart 特有的行为。
问题现象
开发者在 entry-client.tsx 中初始化了一个 SharedWorker 实例,并将其导出供其他组件使用:
import dataWorker from "~/worker/dataWorker?sharedworker";
export const DataWorker = new dataWorker;
然后在路由组件中导入并使用这个 Worker:
import { DataWorker } from "~/entry-client";
const dw = DataWorker;
每当组件加载时,entry-client.tsx 文件都会被重新执行,这不仅影响性能,还可能导致 Worker 被重复创建。
问题根源
经过分析,这个问题源于 SolidStart 的特殊模块处理机制。在 SolidStart 中,entry-client.tsx 作为客户端入口文件,其导入的模块会被视为"客户端专属"模块。当这些模块被其他组件导入时,SolidStart 可能会重新执行整个模块链。
解决方案
正确的做法是将 SharedWorker 的初始化代码移到一个独立的工具文件中,而不是放在 entry-client.tsx 中。例如:
- 创建一个新的工具文件 workerManager.ts:
import dataWorker from "~/worker/dataWorker?sharedworker";
export const DataWorker = new dataWorker;
- 在组件中直接从工具文件导入:
import { DataWorker } from "~/utils/workerManager";
这种架构分离的方式避免了 entry-client.tsx 被重复执行的问题,同时保持了代码的清晰性和可维护性。
最佳实践建议
-
模块分离原则:将业务逻辑与入口文件分离,entry-client.tsx 应只包含最基础的初始化代码。
-
Worker 管理:对于复杂的 Worker 使用场景,建议实现一个 Worker 管理器,集中管理 Worker 实例的生命周期。
-
性能监控:在开发过程中,可以使用性能分析工具监控模块加载情况,及时发现类似的重复执行问题。
-
环境适配:考虑到 SSR 和 CSR 的不同环境,Worker 相关代码应该只在客户端执行,可以通过环境判断或动态导入来实现。
通过这种架构调整,开发者可以在 SolidStart 项目中稳定地使用 SharedWorker 来实现多窗口数据共享,而不会遇到 entry-client.tsx 重复执行的问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00