SmolAgents项目中LiteLLMModel系统消息传递问题的分析与解决
2025-05-13 02:32:42作者:谭伦延
在开源项目SmolAgents的使用过程中,开发者发现当使用LiteLLMModel连接Ollama和Qwen2.5-Instruct模型时,系统消息似乎未能正确传递给大语言模型(LLM)。本文将深入分析这一问题,并提供有效的解决方案。
问题现象
当开发者按照文档示例运行代码时,发现LLM生成的响应与直接向Ollama控制台提问的结果完全一致,这表明系统指令未被正确处理。系统消息中包含的关键代码调用指令未能影响模型行为,导致模型仅基于任务问题本身生成回答,而非按照预期的代码生成方式响应。
技术分析
经过深入排查,发现问题根源在于上下文窗口大小(num_ctx)参数的配置不足。在默认设置下,Ollama的上下文窗口可能无法完整容纳系统消息和任务提示的组合,导致系统消息被截断或忽略。特别是在使用较大模型如Qwen2.5-Instruct时,这一问题更为明显。
解决方案
通过调整num_ctx参数,显式扩大上下文窗口大小,可以确保系统消息被完整传递。以下是修正后的代码示例:
from smolagents import (
CodeAgent,
DuckDuckGoSearchTool,
LiteLLMModel,
)
model_id = "ollama/qwen2.5-coder:32b"
model = LiteLLMModel(
model_id=model_id,
num_ctx=4096*4, # 显式扩大上下文窗口
)
agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model)
agent.run("How many seconds would it take for a leopard at full speed to run through Pont des Arts?")
实施效果
调整参数后,系统能够正确执行以下流程:
- 识别任务需求
- 自动生成搜索代码
- 执行网络搜索获取桥梁长度和豹子速度数据
- 计算最终结果
系统现在能够输出类似"Final answer: 7.8046558387824865"的精确计算结果,而非之前的理论估算。
最佳实践建议
- 在使用较大LLM模型时,应预先检查并调整上下文窗口参数
- 对于复杂任务,建议逐步增加num_ctx值直到系统消息被正确处理
- 监控token使用情况,平衡性能与功能需求
- 不同模型可能需要不同的参数优化策略
通过这一案例,我们认识到在使用LLM接口时,参数配置的细微差别可能导致完全不同的行为表现。正确的参数设置是确保系统按预期工作的关键因素。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868