AIBrix项目中异构GPU推理的HTTP路由管理实践
背景介绍
在AIBrix项目中,异构GPU推理是一个重要特性,它允许用户将同一个模型部署到不同类型的GPU设备上。这种部署方式能够充分利用集群中各种GPU的计算能力,提高资源利用率。然而,在实现这一功能时,HTTP路由的管理成为一个需要特别注意的技术点。
核心问题
当用户部署多个相同模型的实例时,系统会自动创建HTTP路由。如果这些实例部署在不同的GPU类型上(即异构部署),理想情况下它们应该共享同一个HTTP路由和一个服务端点,这样客户端可以通过统一的入口访问这些实例,系统会自动将请求分发到不同的GPU实例上。
技术实现机制
AIBrix通过Kubernetes标签机制来实现这一功能。具体实现原理如下:
-
标签匹配:系统会检查部署的Pod是否带有特定标签
model.aibrix.ai/name,这个标签的值通常是模型名称(如deepseek-coder-7b)。 -
路由创建逻辑:
- 当第一个部署创建时,系统会创建一个对应的HTTPRoute
- 后续部署如果使用相同的模型名称标签,系统会检测到HTTPRoute已存在(通过
apierrors.IsAlreadyExists(err)判断),不会重复创建
-
服务关联:所有使用相同模型名称的部署会关联到同一个Kubernetes服务,该服务的selector字段使用相同的模型名称标签,确保流量可以分发到所有相关实例。
最佳实践建议
-
统一命名规范:确保所有相同模型的部署使用完全一致的
model.aibrix.ai/name标签值,包括大小写敏感。 -
异构部署配置:当需要将模型部署到不同类型的GPU上时,保持模型名称标签不变,只调整GPU相关的资源配置。
-
路由验证:部署后可以通过kubectl检查HTTPRoute和服务资源,确认所有相关部署都被正确关联。
-
流量分发测试:通过网关访问服务,观察请求是否被均匀分发到不同的GPU实例上。
常见问题排查
如果发现系统为相同模型创建了多个HTTPRoute,可能的原因包括:
- 标签值存在细微差异(如大小写不同或前后空格)
- 部署时标签设置不正确
- 控制器未能正确处理已存在路由的情况
总结
AIBrix的异构GPU推理功能通过巧妙的标签机制和路由管理,实现了对同一模型多实例部署的统一访问入口。理解并正确应用这一机制,可以充分发挥异构计算环境的优势,提高模型服务的可用性和资源利用率。开发者在部署时应当特别注意标签的一致性和路由的正确关联,确保系统按预期工作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00