Nautobot v2.4.9版本发布:安全增强与功能优化
Nautobot是一个开源的网络自动化平台,它基于Django框架构建,专为网络工程师和DevOps团队设计。作为NetBox的一个分支,Nautobot提供了网络基础设施的文档记录、IP地址管理(IPAM)、数据中心基础设施管理(DCIM)等功能。最新发布的v2.4.9版本在安全性、功能完善性和用户体验方面都做出了重要改进。
安全更新
本次版本更新中,安全团队修复了一个潜在的安全问题。通过将setuptools升级至78.1.1版本,解决了CVE-2025-47273问题。虽然这不是Nautobot的直接依赖项,但为了确保系统安全,建议所有用户升级本地环境中的setuptools包。
核心功能增强
作业队列管理改进
v2.4.9版本对作业队列管理进行了重要改进。现在,JobResult.execute_job()、JobResult.enqueue_job()和ScheduledJob.create_schedule()方法都新增支持job_queue参数。这一改进使得管理员能够更灵活地控制作业的执行队列。
在用户界面方面,"运行作业"表单现在会显示提示信息,当用户尝试向没有活跃工作者的Celery队列提交作业时,系统会提示但不再阻止作业提交。这种设计既保证了用户体验的流畅性,又给予了管理员足够的操作灵活性。
修复调度作业队列问题
开发团队修复了自2.4.0版本引入的一个问题,该问题导致用户在调度作业时无法指定非默认的作业队列。这一修复确保了调度功能的完整性和灵活性。
数据模型与API改进
VRF表修复
在VRFTable中恢复了缺失的rd列,确保路由区分符(Route Distinguisher)信息能够正确显示在VRF列表中。
导出功能优化
ExportObjectList作业现在能够正确处理SavedView配置。当URL中包含saved_view参数且过滤器未被清除时,作业会从选定的SavedView配置中初始化filter_params。如果URL中还包含额外的查询参数,这些参数会覆盖保存视图中的匹配过滤器,实现了更灵活的导出控制。
GraphQL接口改进
针对MULTISELECT类型的自定义字段,GraphQL接口现在返回JSON数组而非字符串,这与其他字段类型的处理方式保持一致,提高了API的一致性。
用户界面优化
表单按钮修复
修复了NautobotUIViewSet提供的创建/更新视图中表单按钮显示不正确的问题,确保了用户界面的统一性和可用性。
元数据过滤
改进了ObjectMetaData的内容类型过滤功能,使得元数据管理更加精确和高效。
关系关联显示
修复了当表格列描述与未知内容类型的关联关系时可能出现的AttributeError异常,增强了系统的健壮性。
Golden Config应用改进
在Golden Config应用中,修复了点击配置合规性功能导航链接或加载带有哈希的页面时无法正确滚动到指定区域的问题。移除了冲突的旧版滚动偏移逻辑,提升了用户体验。
作业列表显示
修正了作业列表视图中"最后运行"列的渲染问题,确保时间信息能够正确显示。
依赖项更新
本次更新升级了多个关键依赖项:
- cryptography升级至44.0.3版本
- pyuwsgi升级至2.0.29版本
- 文档依赖mkdocs-material升级至9.6.14版本
- 开发依赖pylint升级至3.3.7版本
- 开发依赖pymarkdownlnt升级至0.9.30版本
代码重构与维护
开发团队持续进行代码重构工作,将多个模型的UI视图迁移至UI组件框架和NautobotUIViewSet,包括:
- CloudResourceType模型
- DeviceFamily模型
- DeviceRedundancyGroup模型
- DeviceType模型
- WirelessNetwork模型
- ModuleBayUIViewSet模型
- MetadataType模型
- ComputedField模型
- CircuitTypeUIViewSet模型
- RackReservation模型
这些重构工作提高了代码的一致性和可维护性,为未来的功能扩展奠定了更好的基础。
总结
Nautobot v2.4.9版本虽然是一个维护性更新,但在安全性、功能完善性和用户体验方面都做出了重要改进。从作业队列管理的增强到各种界面问题的修复,再到依赖项的更新和代码重构,这个版本进一步提升了Nautobot作为网络自动化平台的稳定性和可用性。对于现有用户来说,升级到这个版本将获得更好的使用体验和更高的系统安全性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00