在ESP32上运行Burn框架的SqueezeNet模型实践
本文将介绍如何在ESP32-C6微控制器上运行基于Burn深度学习框架的SqueezeNet模型,以及在实现过程中遇到的关键问题与解决方案。
背景介绍
Burn是一个新兴的深度学习框架,特别适合嵌入式设备应用。SqueezeNet是一种轻量级的卷积神经网络模型,因其体积小、计算量低而适合在资源受限的设备上运行。将这两者结合在ESP32这样的微控制器上运行,可以扩展嵌入式设备的AI能力。
开发环境搭建
首先需要配置ESP32-C6的开发环境,包括:
- Rust工具链
- 适当的交叉编译目标(riscv32imc-unknown-none-elf)
- 必要的嵌入式开发工具(probe-rs等)
主要技术挑战
在实现过程中,开发者遇到了几个关键问题:
-
硬件断点清除失败:初始运行时出现RISC-V相关的硬件断点错误,这通常与调试器配置或内存访问有关。
-
内存分配问题:尝试创建224x224x3的浮点张量时,系统崩溃。这表明ESP32的有限内存资源无法处理如此大的张量。
-
API兼容性问题:Burn框架从0.13.0到0.17.0版本经历了重大更新,导致模型加载API发生变化。
解决方案
针对上述问题,采取了以下解决措施:
-
优化内存使用:通过减小输入张量尺寸或使用量化技术降低内存需求。嵌入式设备通常需要特别考虑内存限制。
-
更新模型加载方式:新版本Burn框架要求显式指定设备参数,修正了模型加载代码。
-
改进调试输出:将defmt日志系统替换为esp-println,获得了更详细的错误信息,有助于诊断问题。
实践建议
对于希望在嵌入式设备上运行深度学习模型的开发者,建议:
-
仔细评估设备的内存和计算能力,必要时对模型进行量化或裁剪。
-
保持框架和模型版本的同步更新,注意API变更。
-
使用适合目标平台的调试工具,确保能获取足够的运行时信息。
-
从简单示例开始,逐步增加复杂度,便于定位问题。
总结
在ESP32等资源受限设备上运行深度学习模型需要特别注意内存管理和框架适配。通过本文介绍的方法,开发者可以更顺利地在嵌入式系统上部署AI模型,为物联网设备增加智能能力。随着Burn框架的持续发展,其在嵌入式AI领域的应用前景值得期待。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00