在ESP32上运行Burn框架的SqueezeNet模型实践
本文将介绍如何在ESP32-C6微控制器上运行基于Burn深度学习框架的SqueezeNet模型,以及在实现过程中遇到的关键问题与解决方案。
背景介绍
Burn是一个新兴的深度学习框架,特别适合嵌入式设备应用。SqueezeNet是一种轻量级的卷积神经网络模型,因其体积小、计算量低而适合在资源受限的设备上运行。将这两者结合在ESP32这样的微控制器上运行,可以扩展嵌入式设备的AI能力。
开发环境搭建
首先需要配置ESP32-C6的开发环境,包括:
- Rust工具链
- 适当的交叉编译目标(riscv32imc-unknown-none-elf)
- 必要的嵌入式开发工具(probe-rs等)
主要技术挑战
在实现过程中,开发者遇到了几个关键问题:
-
硬件断点清除失败:初始运行时出现RISC-V相关的硬件断点错误,这通常与调试器配置或内存访问有关。
-
内存分配问题:尝试创建224x224x3的浮点张量时,系统崩溃。这表明ESP32的有限内存资源无法处理如此大的张量。
-
API兼容性问题:Burn框架从0.13.0到0.17.0版本经历了重大更新,导致模型加载API发生变化。
解决方案
针对上述问题,采取了以下解决措施:
-
优化内存使用:通过减小输入张量尺寸或使用量化技术降低内存需求。嵌入式设备通常需要特别考虑内存限制。
-
更新模型加载方式:新版本Burn框架要求显式指定设备参数,修正了模型加载代码。
-
改进调试输出:将defmt日志系统替换为esp-println,获得了更详细的错误信息,有助于诊断问题。
实践建议
对于希望在嵌入式设备上运行深度学习模型的开发者,建议:
-
仔细评估设备的内存和计算能力,必要时对模型进行量化或裁剪。
-
保持框架和模型版本的同步更新,注意API变更。
-
使用适合目标平台的调试工具,确保能获取足够的运行时信息。
-
从简单示例开始,逐步增加复杂度,便于定位问题。
总结
在ESP32等资源受限设备上运行深度学习模型需要特别注意内存管理和框架适配。通过本文介绍的方法,开发者可以更顺利地在嵌入式系统上部署AI模型,为物联网设备增加智能能力。随着Burn框架的持续发展,其在嵌入式AI领域的应用前景值得期待。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00