在ESP32上运行Burn框架的SqueezeNet模型实践
本文将介绍如何在ESP32-C6微控制器上运行基于Burn深度学习框架的SqueezeNet模型,以及在实现过程中遇到的关键问题与解决方案。
背景介绍
Burn是一个新兴的深度学习框架,特别适合嵌入式设备应用。SqueezeNet是一种轻量级的卷积神经网络模型,因其体积小、计算量低而适合在资源受限的设备上运行。将这两者结合在ESP32这样的微控制器上运行,可以扩展嵌入式设备的AI能力。
开发环境搭建
首先需要配置ESP32-C6的开发环境,包括:
- Rust工具链
- 适当的交叉编译目标(riscv32imc-unknown-none-elf)
- 必要的嵌入式开发工具(probe-rs等)
主要技术挑战
在实现过程中,开发者遇到了几个关键问题:
-
硬件断点清除失败:初始运行时出现RISC-V相关的硬件断点错误,这通常与调试器配置或内存访问有关。
-
内存分配问题:尝试创建224x224x3的浮点张量时,系统崩溃。这表明ESP32的有限内存资源无法处理如此大的张量。
-
API兼容性问题:Burn框架从0.13.0到0.17.0版本经历了重大更新,导致模型加载API发生变化。
解决方案
针对上述问题,采取了以下解决措施:
-
优化内存使用:通过减小输入张量尺寸或使用量化技术降低内存需求。嵌入式设备通常需要特别考虑内存限制。
-
更新模型加载方式:新版本Burn框架要求显式指定设备参数,修正了模型加载代码。
-
改进调试输出:将defmt日志系统替换为esp-println,获得了更详细的错误信息,有助于诊断问题。
实践建议
对于希望在嵌入式设备上运行深度学习模型的开发者,建议:
-
仔细评估设备的内存和计算能力,必要时对模型进行量化或裁剪。
-
保持框架和模型版本的同步更新,注意API变更。
-
使用适合目标平台的调试工具,确保能获取足够的运行时信息。
-
从简单示例开始,逐步增加复杂度,便于定位问题。
总结
在ESP32等资源受限设备上运行深度学习模型需要特别注意内存管理和框架适配。通过本文介绍的方法,开发者可以更顺利地在嵌入式系统上部署AI模型,为物联网设备增加智能能力。随着Burn框架的持续发展,其在嵌入式AI领域的应用前景值得期待。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00