DeepDanbooru项目使用指南:如何为图片自动生成标签文件
2025-06-28 22:33:36作者:秋阔奎Evelyn
DeepDanbooru是一个基于深度学习的图片标签自动生成工具,它可以帮助用户为大量图片自动生成描述性标签。本文将详细介绍如何使用该项目为本地图片集生成标签文件。
核心功能概述
DeepDanbooru的主要功能是通过预训练模型分析图片内容,并自动生成对应的描述性标签。这对于管理大型图片库或需要批量处理图片标签的用户特别有用。
快速使用指南
对于只需要使用预训练模型生成标签的用户,可以跳过训练步骤直接使用以下命令:
deepdanbooru evaluate [图片文件夹路径] --project-path [项目文件夹路径] --allow-folder --save-txt
这个命令会:
- 扫描指定文件夹内的所有图片
- 使用预训练模型分析每张图片
- 为每张图片生成对应的.txt标签文件
详细使用说明
1. 准备工作
首先需要确保已经正确安装了DeepDanbooru及其依赖项。建议使用Python虚拟环境来管理依赖。
2. 获取预训练模型
从项目发布页面下载预训练好的模型文件,这些模型已经包含了完整的标签体系(tags.txt),可以直接用于图片分析。
3. 组织图片文件
将要处理的图片整理到一个文件夹中,支持常见的图片格式如JPG、PNG等。文件夹结构没有特殊要求,工具会自动递归扫描子目录。
4. 执行标签生成
使用前面提到的evaluate命令开始处理图片。命令执行后,程序会:
- 加载预训练模型
- 逐张分析图片内容
- 根据置信度输出最相关的标签
- 为每张图片生成同名的.txt标签文件
5. 结果验证
处理完成后,检查生成的.txt文件内容。每个文件包含多行标签,格式为"标签名:置信度",用户可以根据需要筛选高置信度的标签使用。
高级使用建议
对于需要自定义标签体系的用户,可以考虑:
- 准备自己的训练数据集
- 使用项目的训练功能重新训练模型
- 但这个过程需要较多的计算资源和时间
常见问题解答
Q: 为什么标签生成结果不准确? A: 这与模型训练数据有关,预训练模型主要针对特定类型的图片优化,如果您的图片类型差异较大,结果可能不理想。
Q: 能否批量处理子文件夹中的图片? A: 可以,使用--allow-folder参数后,程序会自动递归处理所有子目录中的图片。
通过本文介绍的方法,用户可以快速为大量图片自动生成描述性标签,极大提高图片管理的效率。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5