NeuralForecast项目中Autoformer模型性能优化实践
2025-06-24 11:19:41作者:农烁颖Land
背景介绍
在时间序列预测领域,Autoformer作为一种基于Transformer架构的创新模型,在长期预测任务中展现出优异性能。然而,当用户尝试在NeuralForecast框架下复现原论文结果时,发现预测效果存在显著差距。本文将深入分析问题根源,并提供完整的优化方案。
问题现象
用户在使用NeuralForecast 1.7.0版本时发现:
- 原论文MAE指标表现优异
- 自行实现的代码MAE达到1.599,MSE 4.801
- 预测效果明显差于论文报告结果
关键问题分析
经过技术验证,发现存在以下核心问题:
1. 超参数配置不当
- 训练步数(max_steps)设置不足(原200步 vs 建议1000步)
- 输入窗口(input_size)未遵循论文标准(误设24 vs 正确值36)
- 损失函数未指定(默认可能使用MAE vs 论文使用MSE)
2. 数据频率设置错误
- 错误使用'15min'频率
- 正确应为周频('W')数据
3. 模型类型差异
- 原论文采用多变量(Multivariate)模式
- NeuralForecast当前仅实现单变量(Univariate)版本
优化解决方案
from neuralforecast.losses.pytorch import MSE
models = [
Autoformer(
h=horizon,
input_size=36, # 论文标准输入窗口
max_steps=1000, # 充足训练步数
val_check_steps=100,
early_stop_patience_steps=3,
loss=MSE() # 使用论文指定的损失函数
),
]
nf = NeuralForecast(
models=models,
freq='W' # 正确的数据频率
)
优化效果
实施上述改进后:
- MAE从1.599降至1.325(提升17.1%)
- MSE从4.801降至3.680(提升23.3%)
- 接近原论文报告水平
技术启示
- 模型复现需严格遵循论文参数
- 单变量/多变量选择显著影响结果
- 损失函数选择是模型优化的关键因素
- 充分训练是获得理想结果的必要条件
扩展建议
对于希望进一步提升效果的用户:
- 可尝试增加max_steps至2000+
- 调整学习率等优化器参数
- 考虑使用更长的输入窗口进行实验
- 关注未来版本的多变量实现更新
通过系统化的参数优化和正确的实现方式,可以在NeuralForecast框架下获得接近甚至超越原论文的预测性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134