NeuralForecast项目中Autoformer模型性能优化实践
2025-06-24 11:19:41作者:农烁颖Land
背景介绍
在时间序列预测领域,Autoformer作为一种基于Transformer架构的创新模型,在长期预测任务中展现出优异性能。然而,当用户尝试在NeuralForecast框架下复现原论文结果时,发现预测效果存在显著差距。本文将深入分析问题根源,并提供完整的优化方案。
问题现象
用户在使用NeuralForecast 1.7.0版本时发现:
- 原论文MAE指标表现优异
- 自行实现的代码MAE达到1.599,MSE 4.801
- 预测效果明显差于论文报告结果
关键问题分析
经过技术验证,发现存在以下核心问题:
1. 超参数配置不当
- 训练步数(max_steps)设置不足(原200步 vs 建议1000步)
- 输入窗口(input_size)未遵循论文标准(误设24 vs 正确值36)
- 损失函数未指定(默认可能使用MAE vs 论文使用MSE)
2. 数据频率设置错误
- 错误使用'15min'频率
- 正确应为周频('W')数据
3. 模型类型差异
- 原论文采用多变量(Multivariate)模式
- NeuralForecast当前仅实现单变量(Univariate)版本
优化解决方案
from neuralforecast.losses.pytorch import MSE
models = [
Autoformer(
h=horizon,
input_size=36, # 论文标准输入窗口
max_steps=1000, # 充足训练步数
val_check_steps=100,
early_stop_patience_steps=3,
loss=MSE() # 使用论文指定的损失函数
),
]
nf = NeuralForecast(
models=models,
freq='W' # 正确的数据频率
)
优化效果
实施上述改进后:
- MAE从1.599降至1.325(提升17.1%)
- MSE从4.801降至3.680(提升23.3%)
- 接近原论文报告水平
技术启示
- 模型复现需严格遵循论文参数
- 单变量/多变量选择显著影响结果
- 损失函数选择是模型优化的关键因素
- 充分训练是获得理想结果的必要条件
扩展建议
对于希望进一步提升效果的用户:
- 可尝试增加max_steps至2000+
- 调整学习率等优化器参数
- 考虑使用更长的输入窗口进行实验
- 关注未来版本的多变量实现更新
通过系统化的参数优化和正确的实现方式,可以在NeuralForecast框架下获得接近甚至超越原论文的预测性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120