探秘Nautilus:语法驱动的反馈模糊测试框架
在软件安全领域,有效的漏洞发现和预防是至关重要的。AFL(American Fuzzy Lop)作为一款知名的模糊测试工具,为无数开发者提供了强大的支持。然而,针对高度结构化输入格式的测试,AFL可能力有未逮。正是在这种背景下,Nautilus应运而生,它是一个基于AFL思想,且能指定语法规则的反馈模糊测试框架。
1、项目介绍
Nautilus以其独特的抽象语法树(AST)为基础,对输入进行生成与变异,从而提高针对复杂格式输入的测试效率。与AFL相比,Nautilus更擅长处理如文本格式和编程语言等高度结构化的输入,显著提高了性能和覆盖率。
2、项目技术分析
Nautilus的核心在于其语法驱动的模糊测试策略。当用户为待测程序提供一个语法规则时,Nautilus会构建出对应的AST,并以此生成和变异输入数据。这种方法确保了变异操作遵循输入格式的规则,避免了无效或不符合规范的输入,从而使测试更加精确。
此外,Nautilus还采用了ForkServer模型,通过Clang编译器插件进行代码注入,实现动态二进制代码覆盖的跟踪。这使得Nautilus能够实时监控程序执行路径的变化,进一步优化模糊测试过程。
3、项目及技术应用场景
Nautilus适用于那些输入格式严格、结构复杂的软件项目,例如解析器、编译器或者任何处理特定文件格式的应用。通过利用其语法引导的功能,Nautilus能够在短时间内发现潜在的边界条件错误、解析漏洞或其他类型的安全问题。
4、项目特点
- 语法导向:支持自定义语法规则,生成符合格式的输入。
- 高效变异:使用AST进行变异,提高有效覆盖路径的速度。
- 智能跟踪:ForkServer和Clang插件相结合,实现动态二进制代码覆盖。
- 广泛应用:广泛适用于各种高度结构化的输入格式场景。
快速启动
要体验Nautilus的魅力,只需按照以下步骤设置:
- 设置工作目录并克隆仓库。
- 编译Clang instrumentation wrapper 和目标项目(以mruby为例)。
- 更新配置文件中的路径信息。
- 运行
cargo run -p gramophone --release --bin fuzzer开始模糊测试。
通过以上简单几步,你就可以利用Nautilus开始你的语法驱动模糊测试之旅了。
总的来说,Nautilus是一款创新的模糊测试工具,它的出现填补了AFL在处理高度结构化输入上的空白。如果你正在寻找一个能深入挖掘复杂软件系统漏洞的解决方案,那么Nautilus值得你一试。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00