YOLOv6模型导出ONNX时输入尺寸问题的解决方案
2025-06-05 14:13:20作者:戚魁泉Nursing
YOLOv6
meituan/YOLOv6: 是一个由美团点评团队开发的YOLO系列目标检测模型。适合用于需要高性能目标检测的应用。特点是可以提供优化的网络结构和训练流程,以达到更高的检测准确率和速度。
问题背景
在使用YOLOv6进行目标检测模型训练时,开发者经常会遇到需要将训练好的PyTorch模型导出为ONNX格式的需求。然而在实际操作中,当尝试导出使用特定输入尺寸训练的模型时,可能会遇到张量尺寸不匹配的错误。
错误现象分析
在YOLOv6项目中,当用户尝试使用非标准尺寸(如640x360)训练模型后,在导出ONNX模型时会出现以下典型错误:
RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 24 but got size 23 for tensor number 1 in the list.
这个错误发生在模型的前向传播过程中,具体是在特征图拼接时出现了尺寸不匹配的情况。
根本原因
YOLOv6网络架构设计中对输入图像尺寸有一个重要限制:输入尺寸必须是32的整数倍。这是因为:
- YOLOv6网络包含多个下采样层,每层通常会将特征图尺寸减半
- 经过5次下采样后,原始图像尺寸会被缩小32倍(2^5)
- 如果原始尺寸不是32的倍数,会导致特征图尺寸出现小数,进而引发张量尺寸不匹配
解决方案
要解决这个问题,必须确保导出ONNX模型时指定的输入尺寸满足32的倍数要求。对于原问题中640x360的尺寸:
- 高度360不是32的整数倍(360÷32=11.25)
- 可以调整为最接近的32的倍数:352(32×11)或384(32×12)
因此正确的导出命令应为:
python ./deploy/ONNX/export_onnx.py --weights 640x360.pt --img 384 640 --batch 1 --simplify
或者:
python ./deploy/ONNX/export_onnx.py --weights 640x360.pt --img 352 640 --batch 1 --simplify
最佳实践建议
- 训练时尺寸选择:建议在训练时就使用符合32倍数规则的输入尺寸,避免后续转换问题
- 推理时尺寸处理:在实际部署中,如果输入图像尺寸不符合要求,应该先进行适当的填充或裁剪
- 多尺寸验证:导出ONNX前,可以使用不同尺寸进行验证,确保模型鲁棒性
- 性能考量:某些硬件设备对特定尺寸可能有优化,可针对性选择
总结
YOLOv6作为高效的目标检测框架,对输入尺寸有一定要求。理解网络架构中的下采样机制和尺寸约束,能够帮助开发者避免常见的模型导出问题。通过遵循32倍数的尺寸规则,可以确保模型从训练到部署的顺畅转换。
YOLOv6
meituan/YOLOv6: 是一个由美团点评团队开发的YOLO系列目标检测模型。适合用于需要高性能目标检测的应用。特点是可以提供优化的网络结构和训练流程,以达到更高的检测准确率和速度。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355