YOLOv6模型导出ONNX时输入尺寸问题的解决方案
2025-06-05 15:05:24作者:戚魁泉Nursing
YOLOv6
meituan/YOLOv6: 是一个由美团点评团队开发的YOLO系列目标检测模型。适合用于需要高性能目标检测的应用。特点是可以提供优化的网络结构和训练流程,以达到更高的检测准确率和速度。
问题背景
在使用YOLOv6进行目标检测模型训练时,开发者经常会遇到需要将训练好的PyTorch模型导出为ONNX格式的需求。然而在实际操作中,当尝试导出使用特定输入尺寸训练的模型时,可能会遇到张量尺寸不匹配的错误。
错误现象分析
在YOLOv6项目中,当用户尝试使用非标准尺寸(如640x360)训练模型后,在导出ONNX模型时会出现以下典型错误:
RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 24 but got size 23 for tensor number 1 in the list.
这个错误发生在模型的前向传播过程中,具体是在特征图拼接时出现了尺寸不匹配的情况。
根本原因
YOLOv6网络架构设计中对输入图像尺寸有一个重要限制:输入尺寸必须是32的整数倍。这是因为:
- YOLOv6网络包含多个下采样层,每层通常会将特征图尺寸减半
- 经过5次下采样后,原始图像尺寸会被缩小32倍(2^5)
- 如果原始尺寸不是32的倍数,会导致特征图尺寸出现小数,进而引发张量尺寸不匹配
解决方案
要解决这个问题,必须确保导出ONNX模型时指定的输入尺寸满足32的倍数要求。对于原问题中640x360的尺寸:
- 高度360不是32的整数倍(360÷32=11.25)
- 可以调整为最接近的32的倍数:352(32×11)或384(32×12)
因此正确的导出命令应为:
python ./deploy/ONNX/export_onnx.py --weights 640x360.pt --img 384 640 --batch 1 --simplify
或者:
python ./deploy/ONNX/export_onnx.py --weights 640x360.pt --img 352 640 --batch 1 --simplify
最佳实践建议
- 训练时尺寸选择:建议在训练时就使用符合32倍数规则的输入尺寸,避免后续转换问题
- 推理时尺寸处理:在实际部署中,如果输入图像尺寸不符合要求,应该先进行适当的填充或裁剪
- 多尺寸验证:导出ONNX前,可以使用不同尺寸进行验证,确保模型鲁棒性
- 性能考量:某些硬件设备对特定尺寸可能有优化,可针对性选择
总结
YOLOv6作为高效的目标检测框架,对输入尺寸有一定要求。理解网络架构中的下采样机制和尺寸约束,能够帮助开发者避免常见的模型导出问题。通过遵循32倍数的尺寸规则,可以确保模型从训练到部署的顺畅转换。
YOLOv6
meituan/YOLOv6: 是一个由美团点评团队开发的YOLO系列目标检测模型。适合用于需要高性能目标检测的应用。特点是可以提供优化的网络结构和训练流程,以达到更高的检测准确率和速度。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193