在langchain-ChatGLM项目中实现本地与在线模型的混合部署方案
2025-05-04 17:17:21作者:殷蕙予
在构建基于大语言模型的对话系统时,如何高效地结合本地部署模型和在线API服务是一个常见的技术挑战。本文将以langchain-ChatGLM项目为例,深入探讨这一问题的解决方案。
模型部署架构设计
现代对话系统通常需要多种类型的模型协同工作,包括大语言模型(LLM)、文本嵌入模型(Embedding)和重排序模型(Reranker)等。理想的架构应该能够灵活地混合使用本地部署和云端服务。
在langchain-ChatGLM项目中,推荐采用分层架构:
- 在线API层:通过统一API网关接入商业API,如OpenAI、Moonshot等
- 本地模型层:使用Xinference、Ollama等框架部署本地模型
- 统一接入层:项目自身提供的配置接口,协调两类服务的调用
具体实现方案
在线API服务配置
对于商业API服务,可以通过统一API网关进行管理。配置示例如下:
- platform_name: api_gateway
platform_type: api_gateway
api_base_url: http://127.0.0.1:3000/v1
api_key: sk-******
llm_models:
- gpt-4o
- moonshot-v1-8k
这种配置方式可以集中管理多个商业API服务,提供统一的访问接口,同时便于进行配额控制、日志记录等管理功能。
本地模型服务部署
对于需要本地运行的模型,特别是嵌入模型和重排序模型,推荐使用专门的模型服务框架:
- Xinference部署:轻量级的模型服务框架,支持多种开源模型
- Ollama部署:专注于本地大模型运行的环境
配置示例:
- platform_name: xinference
platform_type: xinference
api_base_url: http://127.0.0.1:9997/v1
embed_models:
- bge-large-zh-v1.5
rerank_models:
- bge-reranker-large
混合调用策略
在实际应用中,系统会根据任务类型自动选择调用路径:
- 生成性任务(对话、创作等):优先使用商业API服务
- 嵌入计算、重排序等:使用本地部署的专用模型
- 当商业API不可用时:可配置降级策略,使用本地LLM模型
技术细节与优化建议
-
性能考量:
- 为本地模型服务设置合理的并发限制
- 商业API调用应考虑网络延迟和配额限制
- 对高频使用的嵌入结果实施缓存策略
-
稳定性措施:
- 实现服务健康检查机制
- 配置自动故障转移策略
- 关键服务部署多个实例实现负载均衡
-
配置管理:
- 使用环境变量管理敏感信息
- 采用版本控制管理配置变更
- 实现配置的热更新能力
常见问题解决
在实际部署中可能会遇到以下问题及解决方案:
-
嵌入模型仍调用在线API:
- 检查模型配置优先级
- 验证本地服务健康状态
- 确认模型名称匹配正确
-
重排序模型不可用:
- 目前标准API协议不支持重排序
- 可考虑通过扩展接口实现
- 或使用本地服务直接调用
-
服务发现与路由:
- 实现基于模型名称的路由规则
- 建立服务注册中心管理实例
- 开发自定义路由策略
总结
通过合理的架构设计和配置管理,langchain-ChatGLM项目可以充分发挥本地模型和在线服务的各自优势。这种混合部署方案既保证了关键功能的可靠性和数据安全性,又能利用商业API的强大能力,为构建企业级对话系统提供了灵活可靠的技术基础。
未来随着模型服务框架的发展,这种架构还可以进一步优化,实现更智能的资源调度和更高效的模型协同,为开发者提供更加强大和易用的工具链。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
195
2.17 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
79

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
207
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17