在langchain-ChatGLM项目中实现本地与在线模型的混合部署方案
2025-05-04 16:52:46作者:殷蕙予
在构建基于大语言模型的对话系统时,如何高效地结合本地部署模型和在线API服务是一个常见的技术挑战。本文将以langchain-ChatGLM项目为例,深入探讨这一问题的解决方案。
模型部署架构设计
现代对话系统通常需要多种类型的模型协同工作,包括大语言模型(LLM)、文本嵌入模型(Embedding)和重排序模型(Reranker)等。理想的架构应该能够灵活地混合使用本地部署和云端服务。
在langchain-ChatGLM项目中,推荐采用分层架构:
- 在线API层:通过统一API网关接入商业API,如OpenAI、Moonshot等
- 本地模型层:使用Xinference、Ollama等框架部署本地模型
- 统一接入层:项目自身提供的配置接口,协调两类服务的调用
具体实现方案
在线API服务配置
对于商业API服务,可以通过统一API网关进行管理。配置示例如下:
- platform_name: api_gateway
platform_type: api_gateway
api_base_url: http://127.0.0.1:3000/v1
api_key: sk-******
llm_models:
- gpt-4o
- moonshot-v1-8k
这种配置方式可以集中管理多个商业API服务,提供统一的访问接口,同时便于进行配额控制、日志记录等管理功能。
本地模型服务部署
对于需要本地运行的模型,特别是嵌入模型和重排序模型,推荐使用专门的模型服务框架:
- Xinference部署:轻量级的模型服务框架,支持多种开源模型
- Ollama部署:专注于本地大模型运行的环境
配置示例:
- platform_name: xinference
platform_type: xinference
api_base_url: http://127.0.0.1:9997/v1
embed_models:
- bge-large-zh-v1.5
rerank_models:
- bge-reranker-large
混合调用策略
在实际应用中,系统会根据任务类型自动选择调用路径:
- 生成性任务(对话、创作等):优先使用商业API服务
- 嵌入计算、重排序等:使用本地部署的专用模型
- 当商业API不可用时:可配置降级策略,使用本地LLM模型
技术细节与优化建议
-
性能考量:
- 为本地模型服务设置合理的并发限制
- 商业API调用应考虑网络延迟和配额限制
- 对高频使用的嵌入结果实施缓存策略
-
稳定性措施:
- 实现服务健康检查机制
- 配置自动故障转移策略
- 关键服务部署多个实例实现负载均衡
-
配置管理:
- 使用环境变量管理敏感信息
- 采用版本控制管理配置变更
- 实现配置的热更新能力
常见问题解决
在实际部署中可能会遇到以下问题及解决方案:
-
嵌入模型仍调用在线API:
- 检查模型配置优先级
- 验证本地服务健康状态
- 确认模型名称匹配正确
-
重排序模型不可用:
- 目前标准API协议不支持重排序
- 可考虑通过扩展接口实现
- 或使用本地服务直接调用
-
服务发现与路由:
- 实现基于模型名称的路由规则
- 建立服务注册中心管理实例
- 开发自定义路由策略
总结
通过合理的架构设计和配置管理,langchain-ChatGLM项目可以充分发挥本地模型和在线服务的各自优势。这种混合部署方案既保证了关键功能的可靠性和数据安全性,又能利用商业API的强大能力,为构建企业级对话系统提供了灵活可靠的技术基础。
未来随着模型服务框架的发展,这种架构还可以进一步优化,实现更智能的资源调度和更高效的模型协同,为开发者提供更加强大和易用的工具链。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
507

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
255
299

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5