在langchain-ChatGLM项目中实现本地与在线模型的混合部署方案
2025-05-04 01:08:44作者:殷蕙予
在构建基于大语言模型的对话系统时,如何高效地结合本地部署模型和在线API服务是一个常见的技术挑战。本文将以langchain-ChatGLM项目为例,深入探讨这一问题的解决方案。
模型部署架构设计
现代对话系统通常需要多种类型的模型协同工作,包括大语言模型(LLM)、文本嵌入模型(Embedding)和重排序模型(Reranker)等。理想的架构应该能够灵活地混合使用本地部署和云端服务。
在langchain-ChatGLM项目中,推荐采用分层架构:
- 在线API层:通过统一API网关接入商业API,如OpenAI、Moonshot等
- 本地模型层:使用Xinference、Ollama等框架部署本地模型
- 统一接入层:项目自身提供的配置接口,协调两类服务的调用
具体实现方案
在线API服务配置
对于商业API服务,可以通过统一API网关进行管理。配置示例如下:
- platform_name: api_gateway
platform_type: api_gateway
api_base_url: http://127.0.0.1:3000/v1
api_key: sk-******
llm_models:
- gpt-4o
- moonshot-v1-8k
这种配置方式可以集中管理多个商业API服务,提供统一的访问接口,同时便于进行配额控制、日志记录等管理功能。
本地模型服务部署
对于需要本地运行的模型,特别是嵌入模型和重排序模型,推荐使用专门的模型服务框架:
- Xinference部署:轻量级的模型服务框架,支持多种开源模型
- Ollama部署:专注于本地大模型运行的环境
配置示例:
- platform_name: xinference
platform_type: xinference
api_base_url: http://127.0.0.1:9997/v1
embed_models:
- bge-large-zh-v1.5
rerank_models:
- bge-reranker-large
混合调用策略
在实际应用中,系统会根据任务类型自动选择调用路径:
- 生成性任务(对话、创作等):优先使用商业API服务
- 嵌入计算、重排序等:使用本地部署的专用模型
- 当商业API不可用时:可配置降级策略,使用本地LLM模型
技术细节与优化建议
-
性能考量:
- 为本地模型服务设置合理的并发限制
- 商业API调用应考虑网络延迟和配额限制
- 对高频使用的嵌入结果实施缓存策略
-
稳定性措施:
- 实现服务健康检查机制
- 配置自动故障转移策略
- 关键服务部署多个实例实现负载均衡
-
配置管理:
- 使用环境变量管理敏感信息
- 采用版本控制管理配置变更
- 实现配置的热更新能力
常见问题解决
在实际部署中可能会遇到以下问题及解决方案:
-
嵌入模型仍调用在线API:
- 检查模型配置优先级
- 验证本地服务健康状态
- 确认模型名称匹配正确
-
重排序模型不可用:
- 目前标准API协议不支持重排序
- 可考虑通过扩展接口实现
- 或使用本地服务直接调用
-
服务发现与路由:
- 实现基于模型名称的路由规则
- 建立服务注册中心管理实例
- 开发自定义路由策略
总结
通过合理的架构设计和配置管理,langchain-ChatGLM项目可以充分发挥本地模型和在线服务的各自优势。这种混合部署方案既保证了关键功能的可靠性和数据安全性,又能利用商业API的强大能力,为构建企业级对话系统提供了灵活可靠的技术基础。
未来随着模型服务框架的发展,这种架构还可以进一步优化,实现更智能的资源调度和更高效的模型协同,为开发者提供更加强大和易用的工具链。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134