首页
/ 探索行人轨迹预测的新星:STAR

探索行人轨迹预测的新星:STAR

2024-05-20 20:50:36作者:卓炯娓

探索行人轨迹预测的新星:STAR

项目介绍

STAR(Spatio-Temporal Graph Transformer Networks)是一个基于深度学习的开源项目,专注于行人轨迹预测。该项目源自于Cunjun Yu等人在2020年欧洲计算机视觉大会(ECCV)发表的论文。它引入了时空图变换网络,为理解复杂的行人交互和运动模式提供了一种新的视角。

项目技术分析

STAR的核心是其独特的时空图变换网络,该网络能够捕捉行人之间的空间关系以及他们随时间演变的行为动态。通过利用Transformer架构,STAR可以有效地处理非线性依赖并增强模型对全局信息的理解。此外,项目基于PyTorch框架构建,并支持GPU加速,使得训练过程更加高效。

项目及技术应用场景

STAR适用于任何需要预测行人运动轨迹的场合,例如智能交通系统、安全监控、人机交互等领域。它可以提供准确的未来路径预测,帮助分析人群流动,优化城市规划,甚至预防潜在的危险情况。目前,STAR已经在ETH/UCY数据集上的五个场景(eth, hotel, zara1, zara2, univ)进行了测试,表现出了强大的泛化能力和适应性。

项目特点

  • 创新算法:STAR采用时空图变换网络,突破传统LSTM的局限,更准确地理解和预测复杂的行人运动模式。
  • 易用性:项目提供了简洁的命令行接口,只需几行代码即可开始训练和测试。
  • 灵活性:用户可以通过配置文件或命令行参数自定义训练设置,以适应不同的实验需求。
  • 性能卓越:STAR在多个公开数据集上表现出色,特别是在最佳FDE指标上记录了优秀结果。
  • 社区支持:项目基于已有的SRLSTM,具有坚实的基础和持续的改进潜力。

我们欢迎您尝试STAR项目,共同推进智能环境下的行人行为理解和预测技术。如果您发现STAR有所帮助,请考虑引用相关研究,支持科研成果的传播和发展。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8