MatrixOne 查询计划分析优化:降低Prepare模式下的CPU开销
2025-07-07 18:05:36作者:秋阔奎Evelyn
背景
在数据库系统中,查询计划分析(AnalyzeExecPlan)是SQL执行前的重要环节,它负责对SQL语句进行解析、优化并生成执行计划。在MatrixOne数据库的Prepare模式下,我们发现AnalyzeExecPlan操作的CPU占用率较高,这影响了系统整体性能。
问题分析
Prepare模式是一种预编译SQL语句的机制,它允许应用程序先发送SQL模板,然后多次执行该模板,每次只需传递不同的参数值。这种模式理论上应该比直接执行SQL更高效,因为可以避免重复的解析和优化开销。
然而在MatrixOne当前实现中,每次执行Prepare语句时,系统仍然会完整地执行AnalyzeExecPlan流程,包括:
- SQL解析
- 语义分析
- 查询重写
- 执行计划生成
- 执行计划优化
这种实现方式没有充分利用Prepare模式的特性,导致了不必要的CPU开销。
优化方案
我们提出了一种基于执行计划缓存的优化方案:
- 执行计划缓存:在第一次Prepare时,将生成的执行计划及其相关上下文(Scope)序列化保存起来
- 参数填充:后续执行时,直接从缓存中反序列化执行计划,只需填充当前参数值
- 自适应失效:当表结构或统计信息变化时,自动使相关缓存失效
这种方案可以显著减少重复的分析和优化工作,特别是在高并发执行相同Prepare语句的场景下。
实现细节
具体实现需要考虑以下关键点:
- 序列化格式:选择高效的二进制序列化方案,减少序列化/反序列化开销
- 缓存管理:实现LRU等缓存淘汰策略,避免内存无限增长
- 失效机制:监控表结构和统计信息变化,及时更新缓存
- 线程安全:确保缓存访问的线程安全性
预期收益
通过这种优化,我们预计可以:
- 降低Prepare模式下30%-50%的CPU开销
- 提高系统整体吞吐量
- 减少查询延迟
- 提升高并发场景下的稳定性
总结
执行计划缓存是数据库优化中的经典技术,将其应用于MatrixOne的Prepare模式可以显著提升性能。这种优化不仅适用于当前版本,也为未来的查询优化器改进奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
449
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885