Solidity编译器优化:按需生成合约字节码的性能提升
Solidity编译器在处理标准JSON输入时存在一个重要的性能优化空间。当用户仅请求部分合约的字节码或中间表示(IR)时,编译器实际上会为所有选定的合约生成这些输出,即使它们最终不会被返回给用户。这一设计限制导致了不必要的编译时间消耗。
问题本质
在当前的Solidity编译器实现中,字节码和IR生成是以批量方式进行的。当标准JSON输入中指定了任何合约需要这些输出时,编译器会为所有相关合约执行完整的代码生成流程,包括优化阶段。这意味着即使工具链通过依赖分析确定某些合约的输出是不必要的,编译器仍然会消耗资源来处理它们。
性能影响
这种设计对于包含大型合约库的项目影响尤为显著。例如在某些去中心化交易协议等复杂项目中,即使工具链仅需要编译一个简单的导入合约,由于编译器内部实现机制,仍然会处理整个导入链上的所有合约。实测数据显示,无论输出选择范围如何,编译时间都保持在同一水平。
解决方案
最新版本的Solidity编译器已经对此进行了优化。现在编译器能够真正实现按需生成,仅对明确请求输出的合约执行完整的代码生成流程。这一改进使得工具链可以通过精细控制输出选择来显著减少编译时间,特别是对于大型项目或频繁进行增量编译的场景。
实际应用价值
这一优化对于现代开发工具链尤为重要。例如Foundry等框架会利用缓存机制来避免重复编译未修改的合约,它们会精确控制输出选择范围。在优化前的编译器版本中,这种精细控制无法带来预期的性能提升,而现在则可以充分发挥作用。
技术实现要点
实现这一改进需要对编译器的输出生成逻辑进行重构,使其支持更细粒度的控制。关键在于将原先的批量处理流程改为基于单个合约的惰性生成机制,同时确保各编译阶段之间的依赖关系得到正确处理。
总结
这一优化标志着Solidity编译器在构建效率方面的重要进步。它不仅直接减少了编译时间,还使工具链能够更有效地利用各种优化策略。对于依赖Solidity进行大型项目开发的团队来说,这意味着更快的迭代速度和更高的开发效率。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00