MediaPipe Model Maker中Keras版本兼容性问题分析与解决方案
2025-05-05 02:28:08作者:龚格成
问题背景
在使用MediaPipe Model Maker进行图像分类任务时,开发者可能会遇到一个常见的错误:"ModuleNotFoundError: No module named 'keras.src.engine'"。这个问题主要源于Keras 3.0版本的重大架构变更,导致与MediaPipe Model Maker的兼容性问题。
问题根源分析
Keras 3.0版本对内部API进行了重大重构,特别是将许多内部模块从原来的位置迁移到了新的命名空间下。具体到这个问题:
- Keras 3.0将引擎相关的实现从
keras.engine移动到了keras.src.engine - MediaPipe Model Maker及其依赖项(如TensorFlow Addons)仍在使用旧的API路径
- 当pip自动安装最新版本的Keras(3.0.5)时,这些旧路径的引用就会失效
影响范围
这个问题主要影响以下使用场景:
- 使用MediaPipe Model Maker进行图像分类、目标检测等任务
- 在Google Colab等环境中使用最新版本的Python和依赖项
- 自动安装依赖项而没有明确指定Keras版本的情况
解决方案
临时解决方案
对于大多数用户,最简单的解决方案是强制使用Keras 2.x版本:
pip install 'keras<3.0.0' mediapipe-model-maker
这个命令会确保安装Keras 2.x的最新版本,避免与Keras 3.0的兼容性问题。
完整环境配置
为了确保整个环境的兼容性,建议使用以下完整的依赖项配置:
pip install "keras<3.0.0" "tensorflow<2.16" "tf-models-official<2.16" mediapipe-model-maker
安装完成后,建议重启Python内核或环境以确保所有更改生效。
注意事项
- 如果在使用过程中遇到量化训练(QAT)相关的问题,可能是由于TensorFlow模型优化工具包(tfmot)的版本问题
- 在某些情况下,可能需要清除pip缓存或创建全新的虚拟环境
- 对于Colab用户,安装后需要重启运行时才能确保更改生效
长期解决方案
MediaPipe团队已经发布了修复版本0.2.1.4,该版本明确指定了兼容的依赖项版本。用户可以直接安装这个版本:
pip install mediapipe-model-maker==0.2.1.4
这个版本已经解决了与Keras 3.0的兼容性问题,并确保与其他依赖项(tensorflow, tf-models-official等)的版本兼容。
最佳实践建议
- 在使用MediaPipe Model Maker时,始终明确指定关键依赖项的版本
- 考虑使用虚拟环境隔离不同项目的依赖项
- 定期检查MediaPipe的更新日志,了解最新的兼容性信息
- 对于生产环境,建议固定所有依赖项的版本以确保稳定性
通过以上措施,开发者可以避免因Keras版本升级带来的兼容性问题,确保MediaPipe Model Maker能够正常工作。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218