MTEB项目中双语嵌入模型的训练数据标注分析
2025-07-01 02:08:25作者:裴麒琰
在MTEB(Massive Text Embedding Benchmark)项目中,双语嵌入模型的训练过程经过了精心设计和多阶段优化。本文将对这一训练流程进行技术解析,帮助读者理解如何构建高质量的双语文本嵌入模型。
训练流程概述
该双语嵌入模型的训练分为四个关键阶段,每个阶段针对不同的语义理解能力进行优化:
-
自然语言推理训练阶段:使用SNLI和XNLI数据集进行训练,采用多负样本排序损失(Multi-Negative Ranking Loss)方法,重点提升模型辨别句子语义细微差异的能力。
-
语义文本相似度微调阶段:在STS基准测试的法语和英语版本上进行微调,使用Siamese BERT网络架构,专门优化语义相似度评估性能。
-
高级数据增强微调阶段:采用增强SBERT技术,结合Pair采样策略,整合交叉编码器和双编码器模型,通过动态丰富训练数据进一步提升模型鲁棒性。
训练数据标注方案
根据技术讨论,该模型的主要训练数据来源可标注为:
- STSBenchmark(包含训练集)
- STSBenchmarkMultilingualSTS(包含训练集)
- XNLI(包含训练集)
值得注意的是,SNLI数据集虽然在实际训练中被使用,但并未包含在MTEB的标准数据集中。
技术要点解析
多负样本排序损失是该模型训练的核心技术之一,它能有效处理句子对之间的相对排序关系,而非简单的二元分类。这种方法特别适合学习细粒度的语义差异。
数据增强阶段采用的"银样本生成"技术(从金样本生成)显著扩充了训练数据的多样性。结合交叉编码器和双编码器的混合策略,既保持了推理效率,又提升了模型性能。
这种分阶段渐进式的训练策略,从通用语义理解到特定任务优化,再到数据增强强化,形成了一个完整的模型能力提升闭环,为双语嵌入任务提供了可靠的技术方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
476
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
94
暂无简介
Dart
726
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
317
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19