在Docker中部署Stable Diffusion WebUI的完整指南
2025-04-28 17:06:12作者:柏廷章Berta
前言
Stable Diffusion WebUI是一个强大的AI图像生成工具,而Docker容器化技术可以大大简化其部署过程。本文将详细介绍如何在Docker环境中运行Stable Diffusion WebUI,支持CPU、CUDA(NVIDIA显卡)和ROCm(AMD显卡)三种不同的运行方式。
系统准备
在开始之前,需要确保系统已经安装了以下组件:
- Docker和Docker Compose(版本1.72.0或更高)
- 根据运行方式选择安装:
- 使用CUDA:安装NVIDIA Container Toolkit
- 使用ROCm:按照ROCm Docker快速入门指南配置
- Windows用户:需要配置WSL2环境并安装CUDA支持
项目结构
创建以下文件来构建Docker环境:
docker-compose.yml
:定义三种服务(CPU/CUDA/ROCm)的配置Dockerfile.cpu
:CPU版本的Docker构建文件Dockerfile.cuda
:NVIDIA显卡版本的Docker构建文件Dockerfile.rocm
:AMD显卡版本的Docker构建文件stablediff.env
:环境变量配置文件.dockerignore
:排除不需要的文件
构建Docker镜像
根据硬件配置选择相应的构建命令:
# CPU版本
docker-compose build stablediff-cpu
# CUDA版本(NVIDIA显卡)
docker-compose build stablediff-cuda
# ROCm版本(AMD显卡)
docker-compose build stablediff-rocm
构建过程会自动下载并安装所有必要的依赖项,包括Python环境、PyTorch框架和Stable Diffusion WebUI的源代码。
配置运行参数
编辑stablediff.env
文件来设置启动参数:
- CPU版本推荐参数:
export COMMANDLINE_ARGS="--listen --no-half --skip-torch-cuda-test"
- CUDA版本推荐参数:
export COMMANDLINE_ARGS="--listen"
- ROCm版本推荐参数:
export COMMANDLINE_ARGS="--listen --precision full --no-half"
可以根据需要添加其他参数,如--lowvram
用于低显存模式。
首次运行
执行以下命令启动容器:
# CPU版本
docker-compose up stablediff-cpu
# CUDA版本
docker-compose up stablediff-cuda
# ROCm版本
docker-compose up stablediff-rocm
首次运行会创建两个目录:
stablediff-web
:存放WebUI的代码和配置stablediff-models
:存放Stable Diffusion模型文件
首次运行后,需要将Stable Diffusion的模型文件(.ckpt)复制到stablediff-models
目录中。
日常使用
启动已经创建的容器:
# CPU版本
docker start -a stablediff-cpu-runner
# CUDA版本
docker start -a stablediff-cuda-runner
# ROCm版本
docker start -a stablediff-rocm-runner
停止容器:
# CPU版本
docker stop stablediff-cpu-runner
# CUDA版本
docker stop stablediff-cuda-runner
# ROCm版本
docker stop stablediff-rocm-runner
性能参考
根据测试数据:
- 在双Xeon X5670 CPU(12GB RAM)上生成512x512图像,速度约为17.44秒/迭代
- 在NVIDIA Maxwell架构显卡(2GB显存)上生成512x512图像,速度约为5.12秒/迭代
注意事项
- 确保有足够的存储空间,Stable Diffusion模型文件通常较大
- 根据硬件配置选择合适的运行方式
- 首次运行可能需要较长时间下载依赖项
- 在Linux系统中操作模型文件可能需要sudo权限
- Windows用户需要特别注意WSL2和CUDA的特殊配置
通过Docker部署Stable Diffusion WebUI可以避免复杂的依赖关系和环境配置问题,使安装过程更加简单可靠。这种方法也便于在不同机器间迁移和部署。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息010GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.97 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
494
37

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
323
10

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
191

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
991
395

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
193
277

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
937
554

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70