在Docker中部署Stable Diffusion WebUI的完整指南
2025-04-28 23:11:02作者:柏廷章Berta
前言
Stable Diffusion WebUI是一个强大的AI图像生成工具,而Docker容器化技术可以大大简化其部署过程。本文将详细介绍如何在Docker环境中运行Stable Diffusion WebUI,支持CPU、CUDA(NVIDIA显卡)和ROCm(AMD显卡)三种不同的运行方式。
系统准备
在开始之前,需要确保系统已经安装了以下组件:
- Docker和Docker Compose(版本1.72.0或更高)
- 根据运行方式选择安装:
- 使用CUDA:安装NVIDIA Container Toolkit
- 使用ROCm:按照ROCm Docker快速入门指南配置
- Windows用户:需要配置WSL2环境并安装CUDA支持
项目结构
创建以下文件来构建Docker环境:
docker-compose.yml:定义三种服务(CPU/CUDA/ROCm)的配置Dockerfile.cpu:CPU版本的Docker构建文件Dockerfile.cuda:NVIDIA显卡版本的Docker构建文件Dockerfile.rocm:AMD显卡版本的Docker构建文件stablediff.env:环境变量配置文件.dockerignore:排除不需要的文件
构建Docker镜像
根据硬件配置选择相应的构建命令:
# CPU版本
docker-compose build stablediff-cpu
# CUDA版本(NVIDIA显卡)
docker-compose build stablediff-cuda
# ROCm版本(AMD显卡)
docker-compose build stablediff-rocm
构建过程会自动下载并安装所有必要的依赖项,包括Python环境、PyTorch框架和Stable Diffusion WebUI的源代码。
配置运行参数
编辑stablediff.env文件来设置启动参数:
- CPU版本推荐参数:
export COMMANDLINE_ARGS="--listen --no-half --skip-torch-cuda-test"
- CUDA版本推荐参数:
export COMMANDLINE_ARGS="--listen"
- ROCm版本推荐参数:
export COMMANDLINE_ARGS="--listen --precision full --no-half"
可以根据需要添加其他参数,如--lowvram用于低显存模式。
首次运行
执行以下命令启动容器:
# CPU版本
docker-compose up stablediff-cpu
# CUDA版本
docker-compose up stablediff-cuda
# ROCm版本
docker-compose up stablediff-rocm
首次运行会创建两个目录:
stablediff-web:存放WebUI的代码和配置stablediff-models:存放Stable Diffusion模型文件
首次运行后,需要将Stable Diffusion的模型文件(.ckpt)复制到stablediff-models目录中。
日常使用
启动已经创建的容器:
# CPU版本
docker start -a stablediff-cpu-runner
# CUDA版本
docker start -a stablediff-cuda-runner
# ROCm版本
docker start -a stablediff-rocm-runner
停止容器:
# CPU版本
docker stop stablediff-cpu-runner
# CUDA版本
docker stop stablediff-cuda-runner
# ROCm版本
docker stop stablediff-rocm-runner
性能参考
根据测试数据:
- 在双Xeon X5670 CPU(12GB RAM)上生成512x512图像,速度约为17.44秒/迭代
- 在NVIDIA Maxwell架构显卡(2GB显存)上生成512x512图像,速度约为5.12秒/迭代
注意事项
- 确保有足够的存储空间,Stable Diffusion模型文件通常较大
- 根据硬件配置选择合适的运行方式
- 首次运行可能需要较长时间下载依赖项
- 在Linux系统中操作模型文件可能需要sudo权限
- Windows用户需要特别注意WSL2和CUDA的特殊配置
通过Docker部署Stable Diffusion WebUI可以避免复杂的依赖关系和环境配置问题,使安装过程更加简单可靠。这种方法也便于在不同机器间迁移和部署。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178