在Docker中部署Stable Diffusion WebUI的完整指南
2025-04-28 15:09:02作者:柏廷章Berta
前言
Stable Diffusion WebUI是一个强大的AI图像生成工具,而Docker容器化技术可以大大简化其部署过程。本文将详细介绍如何在Docker环境中运行Stable Diffusion WebUI,支持CPU、CUDA(NVIDIA显卡)和ROCm(AMD显卡)三种不同的运行方式。
系统准备
在开始之前,需要确保系统已经安装了以下组件:
- Docker和Docker Compose(版本1.72.0或更高)
- 根据运行方式选择安装:
- 使用CUDA:安装NVIDIA Container Toolkit
- 使用ROCm:按照ROCm Docker快速入门指南配置
- Windows用户:需要配置WSL2环境并安装CUDA支持
项目结构
创建以下文件来构建Docker环境:
docker-compose.yml
:定义三种服务(CPU/CUDA/ROCm)的配置Dockerfile.cpu
:CPU版本的Docker构建文件Dockerfile.cuda
:NVIDIA显卡版本的Docker构建文件Dockerfile.rocm
:AMD显卡版本的Docker构建文件stablediff.env
:环境变量配置文件.dockerignore
:排除不需要的文件
构建Docker镜像
根据硬件配置选择相应的构建命令:
# CPU版本
docker-compose build stablediff-cpu
# CUDA版本(NVIDIA显卡)
docker-compose build stablediff-cuda
# ROCm版本(AMD显卡)
docker-compose build stablediff-rocm
构建过程会自动下载并安装所有必要的依赖项,包括Python环境、PyTorch框架和Stable Diffusion WebUI的源代码。
配置运行参数
编辑stablediff.env
文件来设置启动参数:
- CPU版本推荐参数:
export COMMANDLINE_ARGS="--listen --no-half --skip-torch-cuda-test"
- CUDA版本推荐参数:
export COMMANDLINE_ARGS="--listen"
- ROCm版本推荐参数:
export COMMANDLINE_ARGS="--listen --precision full --no-half"
可以根据需要添加其他参数,如--lowvram
用于低显存模式。
首次运行
执行以下命令启动容器:
# CPU版本
docker-compose up stablediff-cpu
# CUDA版本
docker-compose up stablediff-cuda
# ROCm版本
docker-compose up stablediff-rocm
首次运行会创建两个目录:
stablediff-web
:存放WebUI的代码和配置stablediff-models
:存放Stable Diffusion模型文件
首次运行后,需要将Stable Diffusion的模型文件(.ckpt)复制到stablediff-models
目录中。
日常使用
启动已经创建的容器:
# CPU版本
docker start -a stablediff-cpu-runner
# CUDA版本
docker start -a stablediff-cuda-runner
# ROCm版本
docker start -a stablediff-rocm-runner
停止容器:
# CPU版本
docker stop stablediff-cpu-runner
# CUDA版本
docker stop stablediff-cuda-runner
# ROCm版本
docker stop stablediff-rocm-runner
性能参考
根据测试数据:
- 在双Xeon X5670 CPU(12GB RAM)上生成512x512图像,速度约为17.44秒/迭代
- 在NVIDIA Maxwell架构显卡(2GB显存)上生成512x512图像,速度约为5.12秒/迭代
注意事项
- 确保有足够的存储空间,Stable Diffusion模型文件通常较大
- 根据硬件配置选择合适的运行方式
- 首次运行可能需要较长时间下载依赖项
- 在Linux系统中操作模型文件可能需要sudo权限
- Windows用户需要特别注意WSL2和CUDA的特殊配置
通过Docker部署Stable Diffusion WebUI可以避免复杂的依赖关系和环境配置问题,使安装过程更加简单可靠。这种方法也便于在不同机器间迁移和部署。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
217
2.23 K

暂无简介
Dart
523
116

React Native鸿蒙化仓库
JavaScript
210
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
580

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
33
0