Pyecharts中实现K线买卖点标记的上下分开展示技巧
2025-05-15 10:01:37作者:尤辰城Agatha
在金融数据可视化领域,K线图是分析股票走势的重要工具。当我们在使用pyecharts库绘制K线图时,经常需要标记买卖点以辅助决策分析。本文将详细介绍如何在pyecharts中实现买卖点标记的上下分开展示,即买点标记在K线下方,卖点标记在K线上方。
问题背景
默认情况下,pyecharts的markpoint配置只能统一设置所有标记点的显示位置(全部在上方或全部在下方)。但在实际交易分析中,我们通常希望买点和卖点能够以不同位置或样式区分显示,以便更直观地识别交易信号。
解决方案
通过创建辅助Y轴的方式,我们可以巧妙实现买卖点的分开展示:
-
添加辅助Y轴:为K线图添加两个额外的Y轴,这些Y轴不显示实际数据,仅用于承载标记点
-
差异化配置:
- 第一个辅助Y轴配置买点标记,设置标记位置为下方
- 第二个辅助Y轴配置卖点标记,设置标记位置为上方
-
数据关联:
- 将买点数据关联到第一个辅助Y轴
- 将卖点数据关联到第二个辅助Y轴
实现示例
from pyecharts import options as opts
from pyecharts.charts import Kline
# 创建K线图实例
kline = Kline()
# 添加主要K线数据
kline.add_xaxis(["2024-01", "2024-02", "2024-03"])
kline.add_yaxis("K线", [[10,20,5,15], [15,25,10,20], [20,15,8,18]])
# 添加买点辅助Y轴(下方标记)
kline.extend_axis(yaxis=opts.AxisOpts(is_show=False))
kline.add_yaxis(
"买点",
[None, 10, None], # 在第二个月标记买点
yaxis_index=1, # 关联到第一个辅助Y轴
markpoint_opts=opts.MarkPointOpts(
data=[opts.MarkPointItem(type_="min", value_dim="close")],
symbol="circle",
symbol_size=10,
label_opts=opts.LabelOpts(position="bottom") # 标记在下方
)
)
# 添加卖点辅助Y轴(上方标记)
kline.extend_axis(yaxis=opts.AxisOpts(is_show=False))
kline.add_yaxis(
"卖点",
[None, None, 8], # 在第三个月标记卖点
yaxis_index=2, # 关联到第二个辅助Y轴
markpoint_opts=opts.MarkPointOpts(
data=[opts.MarkPointItem(type_="max", value_dim="close")],
symbol="circle",
symbol_size=10,
label_opts=opts.LabelOpts(position="top") # 标记在上方
)
)
# 渲染图表
kline.render("kline_with_markers.html")
进阶技巧
-
样式差异化:除了位置不同,还可以为买卖点设置不同颜色(买点绿色,卖点红色)
-
标记形状:使用不同形状符号区分买卖点,如三角形箭头表示方向
-
交互提示:为标记点添加详细的交易信息提示,如交易量、时间等
-
动态效果:结合pyecharts的动画效果,使标记点更加醒目
总结
通过这种辅助Y轴的创新用法,我们突破了pyecharts原有markpoint配置的限制,实现了买卖点标记的灵活展示。这种方法不仅适用于K线图,也可以推广到其他需要差异化标记的图表场景中。掌握这一技巧后,金融数据分析的可视化效果将更加专业和直观。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217