multisense-prob-fasttext 的安装和配置教程
2025-05-26 17:35:05作者:何举烈Damon
- 项目基础介绍和主要编程语言
multisense-prob-fasttext 是一个开源项目,旨在为多义词嵌入提供概率性FastText模型。该项目基于FastText,使用高斯混合分布来表示每个词,从而能够提取多个含义。它使用C++和Python编程语言。
- 项目使用的关键技术和框架
该项目使用FastText作为子词表示,以增强对稀有词或训练词汇表外词的语义估计。它还使用高斯混合分布来表示每个词,从而能够提取多个含义。此外,该项目还使用了Python中的numpy库来处理数学运算。
- 项目安装和配置的准备工作
安装前,确保您的系统已经安装了以下软件:
- C++编译器(支持C++11,如g++-4.7.2或更新的版本)
- make工具(在Ubuntu上可以使用sudo apt-get install build-essential安装)
- Python(建议使用Python 3)
- numpy库(可以使用pip install numpy安装)
- 详细的安装步骤
4.1. 克隆项目
使用git克隆项目到本地:
git clone https://github.com/benathi/multisense-prob-fasttext.git
4.2. 编译C++文件
进入项目目录,使用make命令编译C++文件:
cd multisense-prob-fasttext
make
这将生成一个名为multift的可执行文件。
4.3. 下载训练数据
项目提供了脚本来下载text8和text9数据集。您可以运行以下命令来下载:
bash data/get_text8.sh
bash data/get_text9.sh
如果您需要其他语言的数据集,请参考项目文档中的说明进行下载。
4.4. 训练模型
使用项目提供的脚本来训练多义词嵌入模型。例如,要使用text8数据集训练模型,请运行:
bash exps/train_text8_multi.sh
训练完成后,您将得到以下文件:
- modelname.words:字典中单词列表
- modelname.bin:子词嵌入模型的二进制文件
- modelname.in:子词嵌入
- modelname.in2:第二个高斯组件的嵌入
- modelname.subword:字典中单词的最终表示
4.5. 评估模型
使用项目提供的Python脚本来评估训练好的模型。例如,要评估text8数据集上的模型,请运行:
python eval/eval_model_wordsim.py --modelname modelfiles/multi_text8_e10_d300_vs2e-4_lr1e-5_margin1
这将计算模型在多个词相似度数据集上的Spearman相关系数。
以上就是multisense-prob-fasttext的安装和配置教程。希望对您有所帮助!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K