在Jupyter Naas项目中实现LinkedIn收藏内容抓取功能的技术解析
2025-06-28 17:52:11作者:庞队千Virginia
LinkedIn作为全球最大的职业社交平台,其用户收藏功能(My Items/Saved Posts)是用户保存有价值内容的重要工具。本文将深入探讨如何在Jupyter Naas项目中实现一个自动化抓取LinkedIn收藏内容的解决方案。
技术背景与需求分析
LinkedIn平台为用户提供了收藏功能,允许用户保存感兴趣的文章和帖子。这些收藏内容存储在"我的项目"下的"已保存帖子"页面中。从技术角度看,该页面采用动态加载方式呈现内容,需要特定的认证方式和数据请求才能获取完整列表。
核心实现方案
认证机制
LinkedIn采用双重认证机制:
- li_at cookie:长期有效的认证令牌
- JSESSIONID cookie:会话级别的安全令牌
这两种认证令牌需要通过浏览器开发者工具获取,是访问私有API的必要凭证。
数据获取流程
- 模拟浏览器请求:使用Python的requests库模拟浏览器行为
- 处理分页数据:LinkedIn采用无限滚动方式加载内容,需要处理分页逻辑
- 解析API响应:分析返回的JSON数据结构,提取关键信息
数据结构设计
返回的数据应包含以下核心字段:
- 内容类型(文章/帖子)
- 内容标题
- 原始URL
- 收藏时间
- 作者信息
技术实现细节
请求头设置
需要精心构造请求头以模拟真实浏览器访问,包括:
- User-Agent
- X-RestLi-Protocol-Version
- X-Li-Lang
- CSRF-Token
API端点分析
通过浏览器开发者工具分析可知,LinkedIn使用以下API端点获取收藏内容:
- 获取帖子列表的GraphQL端点
- 获取文章详情的REST端点
错误处理机制
完善的解决方案需要考虑:
- 认证失效处理
- 速率限制规避
- 网络异常重试
- 数据解析容错
应用场景扩展
该功能可扩展应用于:
- 个人知识管理系统
- 内容推荐引擎的数据源
- 职业发展追踪工具
- 社交内容分析平台
安全与合规考量
实现此类功能时需特别注意:
- 用户隐私保护
- LinkedIn服务条款合规
- 数据使用限制
- 请求频率控制
通过本文的技术解析,开发者可以深入了解在Jupyter Naas环境中构建LinkedIn数据采集功能的完整思路和技术要点,为构建更复杂的数据分析工作流奠定基础。
登录后查看全文 
热门项目推荐
 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00 openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
 docs
docsOpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
263
2.52 K
 kernel
kerneldeepin linux kernel
C
24
6
 flutter_flutter
flutter_flutter暂无简介
Dart
553
124
 ops-math
ops-math本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
596
144
 pytorch
pytorchAscend Extension for PyTorch
Python
94
123
 cangjie_tools
cangjie_tools仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
52
66
 ohos_react_native
ohos_react_nativeReact Native鸿蒙化仓库
JavaScript
219
301
 RuoYi-Vue3
RuoYi-Vue3🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
601
 cangjie_compiler
cangjie_compiler仓颉编译器源码及 cjdb 调试工具。
C++
117
91
 Cangjie-Examples
Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.77 K