DrugVQA 开源项目教程
2024-09-13 00:29:38作者:冯爽妲Honey
1. 项目介绍
DrugVQA 是一个用于预测药物-蛋白质相互作用的深度学习模型。该项目结合了动态注意力卷积神经网络和自注意力序列模型,能够从可变长度的距离图中学习固定大小的表示,并自动提取线性符号的语义特征。DrugVQA 的核心目标是提高药物-蛋白质相互作用预测的准确性和效率。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.6 或更高版本,并安装了以下依赖项:
pip install -r requirements.txt
2.2 数据准备
下载并解压数据集,数据集可以从以下链接获取:
2.3 训练模型
使用以下命令启动训练过程:
python main.py
2.4 测试模型
训练完成后,可以使用以下命令进行模型测试:
python trainAndTest.py
3. 应用案例和最佳实践
3.1 药物筛选
DrugVQA 可以用于大规模的药物筛选,通过预测药物与目标蛋白质的相互作用,快速识别潜在的候选药物。
3.2 蛋白质功能预测
结合蛋白质的3D结构数据,DrugVQA 可以用于预测蛋白质的功能,帮助研究人员理解蛋白质在生物系统中的作用。
3.3 最佳实践
- 数据预处理:确保输入数据的格式和质量,避免噪声数据对模型性能的影响。
- 超参数调优:通过调整模型的超参数(如学习率、批量大小等),优化模型的性能。
- 模型评估:使用交叉验证等方法,评估模型的泛化能力。
4. 典型生态项目
4.1 PyTorch
DrugVQA 基于 PyTorch 框架开发,PyTorch 提供了强大的深度学习工具和库,支持动态计算图和高效的 GPU 加速。
4.2 RDKit
RDKit 是一个用于化学信息学的开源工具包,可以用于处理和分析化学结构数据,与 DrugVQA 结合使用,可以进一步提升药物-蛋白质相互作用预测的准确性。
4.3 DGL (Deep Graph Library)
DGL 是一个用于图神经网络的开源库,可以用于处理和分析复杂的生物网络数据,与 DrugVQA 结合使用,可以扩展模型的应用范围。
通过以上模块的介绍,你可以快速上手 DrugVQA 项目,并了解其在药物-蛋白质相互作用预测中的应用和最佳实践。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869