GLM-4模型单卡微调中的显存优化实践
问题背景
在使用GLM-4模型进行单机单卡微调时,许多开发者遇到了显存爆炸的问题。特别是在使用A40显卡(48GB显存)进行微调时,即使只指定使用一张显卡,系统也会自动占用第二张显卡的显存,最终导致显存不足的错误。
问题现象
当第一张显卡的显存占用达到约20GB时,系统会自动开始使用第二张显卡的显存,同样占用约20GB。几秒钟后,第一张显卡的显存占用会迅速增长超过48GB,最终抛出"CUDA out of memory"错误。
原因分析
-
CUDA环境变量未正确设置:系统默认会尝试使用所有可用GPU资源,即使代码中指定了单卡运行。
-
模型参数规模:GLM-4-9B模型本身参数规模较大,微调时需要较高的显存。
-
数据批处理设置:默认的批处理大小可能不适合单卡运行环境。
解决方案
1. 正确设置CUDA环境变量
在运行微调脚本前,通过以下命令明确指定使用的GPU设备:
export CUDA_VISIBLE_DEVICES=0
这将确保系统只使用第一张显卡(设备号为0的GPU)。
2. 调整批处理参数
在配置文件中调整以下参数可以显著降低显存需求:
writer_batch_size: 1
batch_size: 1
较小的批处理大小会降低单次计算所需的显存,但可能会增加训练时间。
3. 使用显存优化技术
对于显存特别紧张的环境,可以考虑以下优化方法:
-
冻结视觉编码器(ViT)参数:通过冻结部分模型参数,可以将显存需求降低到28-35GB。
-
使用DeepSpeed优化:虽然官方代码未直接支持,但可以修改finetune_vision.py以支持DeepSpeed的Zero2/Zero3优化,将模型参数分散到多张显卡上。不过需要注意,这会显著增加训练时间。
实践建议
-
硬件选择:对于GLM-4-9B模型的微调,建议至少使用单张A40(48GB)显卡,并确保环境变量正确设置。
-
参数调整:优先尝试减小批处理大小和冻结部分模型参数,这是最简单有效的显存优化方法。
-
监控显存使用:在训练过程中实时监控显存使用情况,及时发现异常占用。
-
版本更新:保持GLM-4代码和模型文件为最新版本,开发者可能已经优化了显存使用效率。
总结
GLM-4模型微调过程中的显存管理需要特别注意环境变量设置和参数调整。通过合理配置,可以在单张高端显卡上完成微调任务。对于资源更为有限的环境,可以考虑模型剪枝、量化等进一步的优化技术,但这些方法可能会影响模型性能,需要在实际应用中权衡利弊。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00