GLM-4模型单卡微调中的显存优化实践
问题背景
在使用GLM-4模型进行单机单卡微调时,许多开发者遇到了显存爆炸的问题。特别是在使用A40显卡(48GB显存)进行微调时,即使只指定使用一张显卡,系统也会自动占用第二张显卡的显存,最终导致显存不足的错误。
问题现象
当第一张显卡的显存占用达到约20GB时,系统会自动开始使用第二张显卡的显存,同样占用约20GB。几秒钟后,第一张显卡的显存占用会迅速增长超过48GB,最终抛出"CUDA out of memory"错误。
原因分析
- 
CUDA环境变量未正确设置:系统默认会尝试使用所有可用GPU资源,即使代码中指定了单卡运行。
 - 
模型参数规模:GLM-4-9B模型本身参数规模较大,微调时需要较高的显存。
 - 
数据批处理设置:默认的批处理大小可能不适合单卡运行环境。
 
解决方案
1. 正确设置CUDA环境变量
在运行微调脚本前,通过以下命令明确指定使用的GPU设备:
export CUDA_VISIBLE_DEVICES=0
这将确保系统只使用第一张显卡(设备号为0的GPU)。
2. 调整批处理参数
在配置文件中调整以下参数可以显著降低显存需求:
writer_batch_size: 1
batch_size: 1
较小的批处理大小会降低单次计算所需的显存,但可能会增加训练时间。
3. 使用显存优化技术
对于显存特别紧张的环境,可以考虑以下优化方法:
- 
冻结视觉编码器(ViT)参数:通过冻结部分模型参数,可以将显存需求降低到28-35GB。
 - 
使用DeepSpeed优化:虽然官方代码未直接支持,但可以修改finetune_vision.py以支持DeepSpeed的Zero2/Zero3优化,将模型参数分散到多张显卡上。不过需要注意,这会显著增加训练时间。
 
实践建议
- 
硬件选择:对于GLM-4-9B模型的微调,建议至少使用单张A40(48GB)显卡,并确保环境变量正确设置。
 - 
参数调整:优先尝试减小批处理大小和冻结部分模型参数,这是最简单有效的显存优化方法。
 - 
监控显存使用:在训练过程中实时监控显存使用情况,及时发现异常占用。
 - 
版本更新:保持GLM-4代码和模型文件为最新版本,开发者可能已经优化了显存使用效率。
 
总结
GLM-4模型微调过程中的显存管理需要特别注意环境变量设置和参数调整。通过合理配置,可以在单张高端显卡上完成微调任务。对于资源更为有限的环境,可以考虑模型剪枝、量化等进一步的优化技术,但这些方法可能会影响模型性能,需要在实际应用中权衡利弊。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00