首页
/ GLM-4模型单卡微调中的显存优化实践

GLM-4模型单卡微调中的显存优化实践

2025-06-03 03:41:28作者:伍希望

问题背景

在使用GLM-4模型进行单机单卡微调时,许多开发者遇到了显存爆炸的问题。特别是在使用A40显卡(48GB显存)进行微调时,即使只指定使用一张显卡,系统也会自动占用第二张显卡的显存,最终导致显存不足的错误。

问题现象

当第一张显卡的显存占用达到约20GB时,系统会自动开始使用第二张显卡的显存,同样占用约20GB。几秒钟后,第一张显卡的显存占用会迅速增长超过48GB,最终抛出"CUDA out of memory"错误。

原因分析

  1. CUDA环境变量未正确设置:系统默认会尝试使用所有可用GPU资源,即使代码中指定了单卡运行。

  2. 模型参数规模:GLM-4-9B模型本身参数规模较大,微调时需要较高的显存。

  3. 数据批处理设置:默认的批处理大小可能不适合单卡运行环境。

解决方案

1. 正确设置CUDA环境变量

在运行微调脚本前,通过以下命令明确指定使用的GPU设备:

export CUDA_VISIBLE_DEVICES=0

这将确保系统只使用第一张显卡(设备号为0的GPU)。

2. 调整批处理参数

在配置文件中调整以下参数可以显著降低显存需求:

writer_batch_size: 1
batch_size: 1

较小的批处理大小会降低单次计算所需的显存,但可能会增加训练时间。

3. 使用显存优化技术

对于显存特别紧张的环境,可以考虑以下优化方法:

  • 冻结视觉编码器(ViT)参数:通过冻结部分模型参数,可以将显存需求降低到28-35GB。

  • 使用DeepSpeed优化:虽然官方代码未直接支持,但可以修改finetune_vision.py以支持DeepSpeed的Zero2/Zero3优化,将模型参数分散到多张显卡上。不过需要注意,这会显著增加训练时间。

实践建议

  1. 硬件选择:对于GLM-4-9B模型的微调,建议至少使用单张A40(48GB)显卡,并确保环境变量正确设置。

  2. 参数调整:优先尝试减小批处理大小和冻结部分模型参数,这是最简单有效的显存优化方法。

  3. 监控显存使用:在训练过程中实时监控显存使用情况,及时发现异常占用。

  4. 版本更新:保持GLM-4代码和模型文件为最新版本,开发者可能已经优化了显存使用效率。

总结

GLM-4模型微调过程中的显存管理需要特别注意环境变量设置和参数调整。通过合理配置,可以在单张高端显卡上完成微调任务。对于资源更为有限的环境,可以考虑模型剪枝、量化等进一步的优化技术,但这些方法可能会影响模型性能,需要在实际应用中权衡利弊。

登录后查看全文
热门项目推荐
相关项目推荐