Petals项目中大模型分片部署的存储优化方案
2025-05-24 13:03:20作者:宣聪麟
在分布式机器学习框架Petals的实际应用中,用户经常会遇到存储资源受限的部署场景。特别是在私有化部署时,如何在磁盘空间有限的虚拟机集群上高效部署大型语言模型,成为一个值得探讨的技术问题。
核心挑战分析
传统的大模型部署方式要求每个计算节点都下载完整的模型权重,这对于存储空间有限的虚拟机环境构成了显著挑战。当模型规模达到数十GB甚至上百GB时,这种全量下载的方式会带来两个主要问题:
- 存储空间占用过高,可能超出单个虚拟机的磁盘容量
- 下载时间过长,影响部署效率
解决方案设计
针对这一挑战,Petals项目社区提出了基于网络文件共享的优化方案。该方案的核心思想是通过网络文件系统(NFS)实现模型权重的共享访问,具体实施步骤如下:
-
中心节点全量下载:选择一台存储资源相对充足的虚拟机作为中心节点,完整下载目标大模型的所有权重文件。
-
NFS共享配置:在中心节点上配置NFS服务,将包含模型权重的目录设置为共享目录。
-
客户端挂载:在其他虚拟机节点上挂载该NFS共享目录,使所有计算节点都能访问同一份模型文件。
技术优势
这种方案相比传统部署方式具有多重优势:
- 存储效率提升:集群中只需保存一份完整的模型副本,大幅降低总体存储需求。
- 部署灵活性:可以根据实际需要灵活调整计算节点的数量和配置。
- 维护简便:模型更新只需在中心节点操作一次即可对所有节点生效。
- 成本优化:特别适合使用云虚拟机等按需付费的场景,可以选用不同配置的实例类型。
实现注意事项
在实际部署时,需要考虑以下几个技术细节:
- 网络带宽:确保节点间网络连接具有足够的带宽,避免成为性能瓶颈。
- NFS版本选择:根据操作系统环境选择合适的NFS协议版本以获得最佳性能。
- 权限管理:合理配置NFS访问权限,保证安全性。
- 容错机制:考虑中心节点故障时的备用方案,如设置多个NFS服务器。
扩展思考
这种基于共享存储的部署思路不仅适用于Petals项目,也可以推广到其他需要分布式部署大模型的场景。随着模型规模的持续增长,如何在有限资源下高效部署将成为越来越重要的技术课题。未来可能会出现更多创新的解决方案,如结合对象存储、分层缓存等技术的混合部署架构。
通过这种优化方案,用户可以在资源受限的环境中更灵活地部署和使用大型语言模型,为Petals框架在各类实际场景中的应用提供了更多可能性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
141
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111