首页
/ 智能视频车辆计数器 - 开源力量驱动的计算机视觉创新

智能视频车辆计数器 - 开源力量驱动的计算机视觉创新

2024-05-20 08:11:52作者:董斯意

在当今数字化的世界中,计算机视觉技术正逐渐改变我们理解和解析世界的方式。其中,智能视频车辆计数系统是一个极具潜力的应用,它能够自动识别并追踪视频中的车辆,从而实现高效的数据统计和分析。现在,有一款开源项目可以让你轻松实现这一功能,让我们一起来深入了解它。

项目简介

这个被遗弃的仓库(不再维护)展示了一个基于Maximo Visual Inspection(前称PowerAI Vision)、OpenCV和Jupyter Notebook的智能视频车辆计数系统。尽管项目不更新,但其核心思想和技术仍然具有极高的参考价值。通过这个项目,你可以学习如何利用自动标注创建一个从视频中识别物体的分类器,并进行实时检测和追踪。

项目技术分析

  • Maximo Visual Inspection:这是一个强大的计算机视觉平台,提供了快速实现图像和视频分析的功能,无需深入的深度学习知识。
  • OpenCV:开源计算机视觉库,用于处理视频帧,如对象检测和追踪。
  • Jupyter Notebook:交互式编程环境,方便代码编写、数据探索和结果可视化。

应用场景

  • 交通监控:精确计算道路上的车流量,为城市规划和交通管理提供实时数据。
  • 物流和生产:自动化计数生产线上的产品,提高生产效率和质量控制。
  • 停车场管理:监测停车位使用情况,优化资源分配。

项目特点

  1. 自动标注:通过Maximo Visual Inspection,可以从视频中自动生成训练样本,大大减少手动工作量。
  2. 实时检测与追踪:结合Maximo Visual Inspection的推理API,能够在每个时间间隔内检测到车辆,并用OpenCV进行帧间追踪。
  3. 区域计数:设定兴趣区域,对进入特定区域的车辆进行计数,可计算每秒经过的车辆数量。
  4. 视频注解:将检测结果以边界框的形式显示在视频上,直观呈现车辆位置和统计信息。

架构图

工作流程

  1. 使用Maximo Visual Inspection上传视频。
  2. 自动标注和模型训练。
  3. 部署模型以创建推理API。
  4. 在Jupyter Notebook中处理视频帧,进行检测、追踪和计数。

技术全景

涉及的技术包括人工智能、云计算、数据分析、移动开发以及Python编程,体现了现代计算机视觉解决方案的广泛适用性。

观看视频演示,了解项目运作方式:视频

准备工作

你需要Maximo Visual Inspection的访问权限以及运行Jupyter Notebook的环境,例如安装Anaconda。按项目文档步骤操作,即可完成数据集创建、模型训练和部署,最后运行Jupyter Notebook查看结果和生成注解视频。

尽管这个项目已停止维护,但它所采用的方法和工具在计算机视觉领域依然具有参考价值。如果你正在寻找构建类似系统的起点,或者想进一步研究对象检测和视频分析,这绝对是一个值得尝试的开源项目。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
23
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.28 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
flutter_flutterflutter_flutter
暂无简介
Dart
526
116
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17
GLM-4.6GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
JavaScript
214
288