oneDNN在AArch64 SVE平台上的卷积性能分析与优化
2025-06-18 02:01:17作者:胡唯隽
性能问题背景
在使用oneDNN 3.4版本在AArch64 SVE256架构处理器上进行卷积运算时,开发者遇到了显著的性能问题。测试用例为一个特定尺寸的卷积运算,理论计算显示该运算应在约1.23秒内完成,但实际测量结果却高达60秒以上,性能差距接近50倍。
问题分析
测试用例的具体参数为:
- 输入通道:64
- 输入尺寸:2560×1440
- 输出通道:3
- 卷积核尺寸:9×9
- 步长:1×1
- 填充:4×4
- 数据类型:f32
- 批量大小:1
从性能日志中可以看到,oneDNN 3.4版本在该用例上使用了参考实现(ref:any)而非优化实现,这直接导致了性能不理想。同时,日志中还显示出现了"scratchpad memory limit exceeded"的警告信息,表明可能存在内存分配问题。
硬件理论性能计算
基于AArch64 SVE256处理器的规格:
- 主频:2.9GHz
- 向量宽度:256位
- 每个周期可执行2次FMA操作
理论峰值性能计算为: 2.9GHz × (256bits/32bits) × 2FMA × 2 = 92.8 GFlops/s
而测试用例的理论计算量为114.66 GFlops,因此理想执行时间应为1.23秒左右。
数据类型支持问题
在尝试使用fp16数据类型时,开发者遇到了以下问题:
- 当使用f16:f16:f16格式时,测试被标记为"DATA_TYPE_NOT_SUPPORTED"
- 当尝试使用ACL(Compute Library)后端时,日志显示"Unsupported type. Could not find a kernel"
这表明当前版本对fp16卷积运算的支持存在限制,尽管硬件本身支持fp16运算。
解决方案与验证
在升级到最新版oneDNN后,性能问题得到了显著改善:
- 执行时间从60秒以上降低到接近理论值
- 性能提升约50倍
这表明该问题主要是由于旧版本中针对该特定卷积配置的优化实现缺失导致的。
技术建议
对于在AArch64平台上使用oneDNN的开发者,建议:
- 始终使用最新版本的oneDNN以获得最佳性能
- 对于fp16运算,需要确认当前版本是否支持特定的数据格式组合
- 使用ONEDNN_VERBOSE=dispatch环境变量来检查实际使用的实现方式
- 对于大型卷积运算,注意内存使用情况,避免scratchpad内存不足
结论
oneDNN在AArch64 SVE平台上的性能表现与版本密切相关。开发者遇到性能问题时,首先应考虑升级到最新版本。同时,对于特定数据类型和运算组合的支持情况,需要参考官方文档并通过实际测试验证。性能调优时,理论计算与实际测量的对比是发现潜在问题的重要手段。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
635
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
634