oneDNN在AArch64 SVE平台上的卷积性能分析与优化
2025-06-18 02:42:37作者:胡唯隽
性能问题背景
在使用oneDNN 3.4版本在AArch64 SVE256架构处理器上进行卷积运算时,开发者遇到了显著的性能问题。测试用例为一个特定尺寸的卷积运算,理论计算显示该运算应在约1.23秒内完成,但实际测量结果却高达60秒以上,性能差距接近50倍。
问题分析
测试用例的具体参数为:
- 输入通道:64
- 输入尺寸:2560×1440
- 输出通道:3
- 卷积核尺寸:9×9
- 步长:1×1
- 填充:4×4
- 数据类型:f32
- 批量大小:1
从性能日志中可以看到,oneDNN 3.4版本在该用例上使用了参考实现(ref:any)而非优化实现,这直接导致了性能不理想。同时,日志中还显示出现了"scratchpad memory limit exceeded"的警告信息,表明可能存在内存分配问题。
硬件理论性能计算
基于AArch64 SVE256处理器的规格:
- 主频:2.9GHz
- 向量宽度:256位
- 每个周期可执行2次FMA操作
理论峰值性能计算为: 2.9GHz × (256bits/32bits) × 2FMA × 2 = 92.8 GFlops/s
而测试用例的理论计算量为114.66 GFlops,因此理想执行时间应为1.23秒左右。
数据类型支持问题
在尝试使用fp16数据类型时,开发者遇到了以下问题:
- 当使用f16:f16:f16格式时,测试被标记为"DATA_TYPE_NOT_SUPPORTED"
- 当尝试使用ACL(Compute Library)后端时,日志显示"Unsupported type. Could not find a kernel"
这表明当前版本对fp16卷积运算的支持存在限制,尽管硬件本身支持fp16运算。
解决方案与验证
在升级到最新版oneDNN后,性能问题得到了显著改善:
- 执行时间从60秒以上降低到接近理论值
- 性能提升约50倍
这表明该问题主要是由于旧版本中针对该特定卷积配置的优化实现缺失导致的。
技术建议
对于在AArch64平台上使用oneDNN的开发者,建议:
- 始终使用最新版本的oneDNN以获得最佳性能
- 对于fp16运算,需要确认当前版本是否支持特定的数据格式组合
- 使用ONEDNN_VERBOSE=dispatch环境变量来检查实际使用的实现方式
- 对于大型卷积运算,注意内存使用情况,避免scratchpad内存不足
结论
oneDNN在AArch64 SVE平台上的性能表现与版本密切相关。开发者遇到性能问题时,首先应考虑升级到最新版本。同时,对于特定数据类型和运算组合的支持情况,需要参考官方文档并通过实际测试验证。性能调优时,理论计算与实际测量的对比是发现潜在问题的重要手段。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355