NVIDIA DALI 中实现批次内特定图像组的水平翻转控制
概述
在深度学习数据增强过程中,有时需要对批次中的特定图像组应用相同的变换操作。本文将介绍如何使用NVIDIA DALI(Data Loading Library)实现批次内特定图像组的水平翻转控制,特别是针对视频帧序列等需要保持组内一致性的场景。
问题背景
在视频处理或序列图像处理中,我们经常需要将一个视频片段的多帧图像作为一个组进行处理。当应用数据增强(如水平翻转)时,通常需要确保同一视频片段的所有帧都应用相同的变换,以保持时间连续性。然而,DALI默认的随机翻转操作是针对单张图像独立进行的。
解决方案
通过结合DALI的random.coin_flip和permute_batch操作,可以实现批次内特定图像组的统一翻转控制。以下是关键实现步骤:
-
创建分组索引:首先需要为批次中的图像创建分组标识。例如,对于24张图像的批次,每8张为一组,可以创建索引数组
[0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,...]。 -
生成随机翻转决策:使用
fn.random.coin_flip生成随机翻转决策,这个决策默认会对每张图像独立进行。 -
统一组内决策:通过
fn.permute_batch将随机翻转决策按照分组索引进行排列,确保同一组内的所有图像使用相同的翻转决策。
代码实现
@pipeline_def(batch_size=24, enable_conditionals=True)
def VideoPipe(total_picture, file_list):
# 文件读取和初始处理
input = fn.readers.file(file_list=file_list, random_shuffle=False)
shapes = fn.peek_image_shape(input[0])
# 创建分组索引(每8张为一组)
num_clips = total_picture // 8
indices = np.concatenate([i * np.ones(8, dtype=int) for i in range(num_clips)])
indices = indices.tolist()
# 随机裁剪处理
crop_anchor, crop_shape = fn.random_crop_generator(shapes, random_area=[0.2, 1.0])
crop_anchor = fn.permute_batch(crop_anchor, indices=indices)
crop_shape = fn.permute_batch(crop_shape, indices=indices)
# 图像解码和预处理
images = fn.decoders.image_slice(input[0], crop_anchor, crop_shape, device="mixed", axis_names="HW")
images = fn.resize(images, resize_x=300, resize_y=300, device="gpu")
frames = fn.transpose(images, perm=[2, 0, 1])
# 随机裁剪
gc_frame1 = fn.random_resized_crop(frames, size=224, device="gpu", random_area=[0.4, 1.0])
# 关键步骤:统一组内翻转决策
coin = fn.random.coin_flip(probability=0.5)
coin = fn.permute_batch(coin, indices=indices) # 确保同一组使用相同的翻转决策
# 条件翻转
if coin:
gc_frame1 = fn.flip(gc_frame1, horizontal=1, device="gpu")
else:
gc_frame1 = gc_frame1
return gc_frame1
技术要点
-
分组索引创建:通过NumPy创建重复的分组索引,确保同一组的图像具有相同的索引值。
-
决策统一化:
permute_batch操作将随机生成的翻转决策按照分组索引重新排列,使得同一组内的所有图像使用相同的决策结果。 -
条件执行:DALI的
@pipeline_def装饰器中的enable_conditionals=True参数启用了条件语句支持,使得可以根据翻转决策选择性地应用变换。
应用场景
这种技术特别适用于以下场景:
-
视频帧处理:确保同一视频片段的所有帧应用相同的空间变换,保持时间连续性。
-
多视角图像处理:同一物体的多个视角图像应保持一致的变换。
-
数据增强一致性:当需要确保增强后的数据保持某些空间关系时。
总结
通过巧妙组合DALI的基本操作,我们可以实现对批次内特定图像组的统一变换控制。这种方法不仅适用于水平翻转,还可以扩展到其他需要组内一致性的数据增强操作。关键在于使用分组索引和permute_batch操作来统一决策,确保组内变换的一致性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00