首页
/ OpenCompass/VLMEvalKit评测框架中的关键问题解析

OpenCompass/VLMEvalKit评测框架中的关键问题解析

2025-07-03 16:36:19作者:舒璇辛Bertina

评测数据集使用情况分析

在OpenCompass/VLMEvalKit评测框架中,MMMU数据集的使用方式引起了开发者关注。经过确认,该框架在MMMU评测中仅使用了验证集(Val),而没有使用开发集(Dev)。这一设计选择对于研究者复现结果具有重要意义,因为不同数据子集的使用会直接影响模型的最终评测分数。

推理方法的选择与验证

关于思维链(COT)方法的使用,评测框架在MMMU数据集上明确采用了非COT的评测方式。这一决策背后可能有以下技术考量:

  1. 保持评测方法的简洁性和一致性
  2. 避免COT提示对特定模型产生偏向性影响
  3. 确保不同模型间的公平比较

值得注意的是,InternVL模型在评测中确实使用了COT方法,这体现在其自定义提示模板中包含了特定的推理指令。这种差异化的处理方式需要研究者在复现结果时特别注意。

评测结果差异的技术分析

OCRBench评测中出现的分数差异问题揭示了几个关键技术点:

  1. 模型版本影响:GPT4o_0513模型在不同评测环境下表现差异显著,这促使评测团队重新验证并更新了结果

  2. 分辨率设置:特别是对于Qwen2.5-VL-3B等视觉语言模型,输入图像的分辨率设置对OCR性能有重大影响。测试表明,将分辨率调整到10×10至28×28像素范围可以显著提升模型表现

  3. 评测配置一致性:不同硬件环境(nproc-per-node设置)下的评测结果可能存在差异,这要求研究者在复现时保持环境配置一致

实践建议

基于这些发现,我们建议研究者在进行模型评测时:

  1. 仔细检查评测框架的默认配置
  2. 对于视觉任务,特别注意图像预处理参数
  3. 记录完整的评测环境信息以便结果复现
  4. 关注评测框架的更新日志,及时获取评测方法的调整信息

这些实践将有助于获得更加可靠和可复现的模型评测结果。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300
kernelkernel
deepin linux kernel
C
22
5
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K