JTA-Dataset 项目启动与配置教程
1. 项目目录结构及介绍
JTA-Dataset 项目目录结构如下:
JTA-Dataset/
├── annotations/ # 存储数据集注释信息的目录
│ ├── train/ # 训练集注释信息
│ ├── test/ # 测试集注释信息
│ └── val/ # 验证集注释信息
├── videos/ # 存储数据集视频的目录
│ ├── train/ # 训练集视频
│ ├── test/ # 测试集视频
│ └── val/ # 验证集视频
├── to_imgs.py # 将视频分割为帧并保存为指定格式的 Python 脚本
├── to_poses.py # 将序列注释分割为帧注释并保存为指定格式的 Python 脚本
├── visualize.py # 提供注释可视化表示的 Python 脚本
├── coco_style_convert.py # 将注释转换为 COCO 格式的 Python 脚本
├── posetrack_style_convert.py # 将注释转换为 PoseTrack18 格式的 Python 脚本
├── joint.py # 脚本支持类,用于处理关节信息
├── pose.py # 脚本支持类,用于处理姿态信息
└── requirements.txt # 项目所需的依赖列表
2. 项目的启动文件介绍
项目的主要启动文件是 Python 脚本,包括以下几个:
-
to_imgs.py:此脚本用于将数据集中的视频分割为单独的帧,并保存为指定的图片格式(默认为 JPG)。使用此脚本时,可以通过--out_dir_path参数指定输出目录,通过--img_format参数指定图片格式。 -
to_poses.py:此脚本用于将每序列的注释信息分割为每帧的注释信息,并保存为指定的格式(默认为 Numpy)。使用此脚本时,可以通过--out_dir_path参数指定输出目录,通过--format参数指定保存格式。 -
visualize.py:此脚本用于提供注释的可视化表示,将注释信息叠加到视频帧上。使用此脚本时,需要指定输入视频文件路径、注释文件路径和输出视频文件路径。 -
coco_style_convert.py和posetrack_style_convert.py:这两个脚本用于将注释信息转换为 COCO 格式和 PoseTrack18 格式,分别。使用时,可以通过--out_dir_path参数指定输出目录。
3. 项目的配置文件介绍
项目中的配置主要通过修改 Python 脚本中的参数进行。以下是几个关键配置的说明:
-
to_imgs.py和to_poses.py中的--out_dir_path参数:指定处理后文件的输出目录。 -
to_imgs.py中的--img_format参数:指定输出图片的格式,可以是 JPG 或 PNG。 -
to_poses.py中的--format参数:指定注释信息的保存格式,可以是 Numpy 或 Torch。 -
visualize.py中的--in_mp4_file_path、--json_file_path和--out_mp4_file_path参数:分别指定输入视频文件路径、注释文件路径和输出视频文件路径。
在运行任何脚本之前,请确保已经根据 requirements.txt 文件安装了所有必要的依赖项。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00